Kari E Branham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3588900/publications.pdf

Version: 2024-02-01

86 papers

9,710 citations

31 h-index 70 g-index

90 all docs 90 docs citations

90 times ranked 19421 citing authors

#	Article	IF	CITATIONS
1	A reference panel of 64,976 haplotypes for genotype imputation. Nature Genetics, 2016, 48, 1279-1283.	21.4	2,421
2	A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. Nature Genetics, 2016, 48, 134-143.	21.4	1,167
3	Seven new loci associated with age-related macular degeneration. Nature Genetics, 2013, 45, 433-439.	21.4	687
4	Genetic variants near <i>TIMP3</i> and high-density lipoprotein–associated loci influence susceptibility to age-related macular degeneration. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7401-7406.	7.1	475
5	A variant of mitochondrial protein LOC387715/ARMS2, not HTRA1, is strongly associated with age-related macular degeneration. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16227-16232.	7.1	398
6	Strong Association of the Y402H Variant in Complement Factor H at 1q32 with Susceptibility to Age-Related Macular Degeneration. American Journal of Human Genetics, 2005, 77, 149-153.	6.2	327
7	CFH haplotypes without the Y402H coding variant show strong association with susceptibility to age-related macular degeneration. Nature Genetics, 2006, 38, 1049-1054.	21.4	318
8	Nextâ€generation genetic testing for retinitis pigmentosa. Human Mutation, 2012, 33, 963-972.	2.5	258
9	E2-2 Protein and Fuchs's Corneal Dystrophy. New England Journal of Medicine, 2010, 363, 1016-1024.	27.0	247
10	High-Resolution Imaging with Adaptive Optics in Patients with Inherited Retinal Degeneration. , 2007, 48, 3283.		241
11	Next generation sequencing-based molecular diagnosis of retinitis pigmentosa: identification of a novel genotype-phenotype correlation and clinical refinements. Human Genetics, 2014, 133, 331-345.	3.8	204
12	Toll-like receptor 4 variant D299G is associated with susceptibility to age-related macular degeneration. Human Molecular Genetics, 2005, 14, 1449-1455.	2.9	177
13	Identification of a rare coding variant in complement 3 associated with age-related macular degeneration. Nature Genetics, 2013, 45, 1375-1379.	21.4	158
14	Age-Related Macular Degeneration: A High-Resolution Genome Scan for Susceptibility Loci in a Population Enriched for Late-Stage Disease. American Journal of Human Genetics, 2004, 74, 482-494.	6.2	157
15	Biomarkers of Cardiovascular Disease as Risk Factors for Age-Related Macular Degeneration. Ophthalmology, 2005, 112, 2076-2080.	5.2	143
16	Ancestry estimation and control of population stratification for sequence-based association studies. Nature Genetics, 2014, 46, 409-415.	21.4	136
17	Association of Apolipoprotein E Alleles with Susceptibility to Age-Related Macular Degeneration in a Large Cohort from a Single Center. Investigative Ophthalmology and Visual Science, 2004, 45, 1306-1310.	3.3	129
18	Mutations in the X-Linked Retinitis Pigmentosa Genes <i>RPGR</i> and <i>RP2</i> Found in 8.5% of Families with a Provisional Diagnosis of Autosomal Dominant Retinitis Pigmentosa., 2013, 54, 1411.		113

#	Article	IF	Citations
19	Premature Truncation of a Novel Protein, RD3, Exhibiting Subnuclear Localization Is Associated with Retinal Degeneration. American Journal of Human Genetics, 2006, 79, 1059-1070.	6.2	112
20	Mutations in <i>RPGR </i> and <irp2 <="" i="">Account for 15% of Males with Simplex Retinal Degenerative Disease., 2012, 53, 8232.</irp2>		108
21	Inner Retinal Abnormalities in X-linked Retinitis Pigmentosa with <i>RPGR</i> Mutations., 2007, 48, 4759.		107
22	Genome-wide association study and meta-analysis of intraocular pressure. Human Genetics, 2014, 133, 41-57.	3.8	93
23	Complement Factor D in Age-Related Macular Degeneration. , 2011, 52, 8828.		92
24	Advancing Therapeutic Strategies for Inherited Retinal Degeneration: Recommendations From the Monaciano Symposium. Investigative Ophthalmology and Visual Science, 2015, 56, 918-931.	3.3	92
25	Mutations in a BTB-Kelch Protein, KLHL7, Cause Autosomal-Dominant Retinitis Pigmentosa. American Journal of Human Genetics, 2009, 84, 792-800.	6.2	89
26	Toll-like Receptor Polymorphisms and Age-Related Macular Degeneration., 2008, 49, 1652.		79
27	Complement factor H genetic variant and age-related macular degeneration: effect size, modifiers and relationship to disease subtype. International Journal of Epidemiology, 2012, 41, 250-262.	1.9	79
28	Differential DNA methylation identified in the blood and retina of AMD patients. Epigenetics, 2015, 10, 698-707.	2.7	62
29	Advancing Clinical Trials for Inherited Retinal Diseases: Recommendations from the Second Monaciano Symposium. Translational Vision Science and Technology, 2020, 9, 2.	2.2	56
30	Loss of lysophosphatidylcholine acyltransferase 1 leads to photoreceptor degeneration in <i>rd11</i> mice. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15523-15528.	7.1	55
31	Expression of Thyrotropin Receptor, Thyroglobulin, Sodium-Iodide Symporter, and Thyroperoxidase by Fibrocytes Depends on AIRE. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E1236-E1244.	3.6	52
32	Rare and common variants in extracellular matrix gene Fibrillin 2 (FBN2) are associated with macular degeneration. Human Molecular Genetics, 2014, 23, 5827-5837.	2.9	52
33	Hypomethylation of the IL17RC Promoter in Peripheral Blood Leukocytes Is Not A Hallmark of Age-Related Macular Degeneration. Cell Reports, 2013, 5, 1527-1535.	6.4	42
34	Clinical Phenotypes and Prognostic Full-Field Electroretinographic Findings in Stargardt Disease. American Journal of Ophthalmology, 2013, 155, 465-473.e3.	3.3	39
35	Worldwide Argus II implantation: recommendations to optimize patient outcomes. BMC Ophthalmology, 2016, 16, 52.	1.4	39
36	Diagnostic Fundus Autofluorescence Patterns in Achromatopsia. American Journal of Ophthalmology, 2013, 156, 1211-1219.e2.	3.3	38

#	Article	IF	Citations
37	Molecular Testing for Hereditary Retinal Disease as Part of Clinical Care. JAMA Ophthalmology, 2007, 125, 252.	2.4	37
38	Screening of a Large Cohort of Leber Congenital Amaurosis and Retinitis Pigmentosa Patients Identifies Novel <i>LCA5</i> Mutations and New Genotype-Phenotype Correlations. Human Mutation, 2013, 34, 1537-1546.	2.5	32
39	Phenotypic Conservation in Patients With X-Linked Retinitis Pigmentosa Caused by <i>RPGR </i> Mutations. JAMA Ophthalmology, 2013, 131, 1016.	2.5	31
40	A Novel Dominant Mutation in <i>SAG</i> , the Arrestin-1 Gene, Is a Common Cause of Retinitis Pigmentosa in Hispanic Families in the Southwestern United States., 2017, 58, 2774.		31
41	Establishing the involvement of the novel gene <i>AGBL5</i> i>in retinitis pigmentosa by whole genome sequencing. Physiological Genomics, 2016, 48, 922-927.	2.3	29
42	Prevalence of Antiretinal Antibodies in Acute Zonal Occult Outer Retinopathy: AÂComprehensive Review of 25 Cases. American Journal of Ophthalmology, 2017, 176, 210-218.	3. 3	29
43	Association of Smoking, Alcohol Consumption, Blood Pressure, Body Mass Index, and Glycemic Risk Factors With Age-Related Macular Degeneration. JAMA Ophthalmology, 2021, 139, 1299.	2.5	29
44	Long-term follow-up of a family with dominant X-linked retinitis pigmentosa. Eye, 2010, 24, 764-774.	2.1	27
45	Contribution of noncoding pathogenic variants to RPGRIP1-mediated inherited retinal degeneration. Genetics in Medicine, 2019, 21, 694-704.	2.4	27
46	Real-world outcomes of voretigene neparvovec treatment in pediatric patients with RPE65-associated Leber congenital amaurosis. Graefe's Archive for Clinical and Experimental Ophthalmology, 2022, 260, 1543-1550.	1.9	27
47	Deepâ€intronic variants in <i>CNGB3</i> cause achromatopsia by pseudoexon activation. Human Mutation, 2020, 41, 255-264.	2.5	26
48	Family-based exome sequencing identifies rare coding variants in age-related macular degeneration. Human Molecular Genetics, 2020, 29, 2022-2034.	2.9	26
49	Peripapillary Dark Choroid Ring as a Helpful Diagnostic Sign in Advanced Stargardt Disease. American Journal of Ophthalmology, 2010, 149, 656-660.e2.	3.3	25
50	Genetic analysis of 10 pedigrees with inherited retinal degeneration by exome sequencing and phenotype-genotype association. Physiological Genomics, 2017, 49, 216-229.	2.3	23
51	Surgical outcomes of Glaucoma associated with Axenfeld-Rieger syndrome. BMC Ophthalmology, 2020, 20, 172.	1.4	21
52	Mutations in the small nuclear riboprotein 200 kDa gene (SNRNP200) cause 1.6% of autosomal dominant retinitis pigmentosa. Molecular Vision, 2013, 19, 2407-17.	1.1	20
53	Mutations in the gene $\langle i \rangle$ PDE6C $\langle i \rangle$ encoding the catalytic subunit of the cone photoreceptor phosphodiesterase in patients with achromatopsia. Human Mutation, 2018, 39, 1366-1371.	2.5	18
54	Expansion of Severely Constricted Visual Field Using Google Glass. Ophthalmic Surgery Lasers and Imaging Retina, 2016, 47, 486-489.	0.7	16

#	Article	IF	CITATIONS
55	Establishing baseline rod electroretinogram values in achromatopsia and cone dystrophy. Documenta Ophthalmologica, 2012, 125, 229-233.	2.2	13
56	<i>C2orf71</i> Mutations as a Frequent Cause of Autosomal-Recessive Retinitis Pigmentosa: Clinical Analysis and Presentation of 8 Novel Mutations., 2017, 58, 3840.		13
57	Deciphering the genetic architecture and ethnographic distribution of IRD in three ethnic populations by whole genome sequence analysis. PLoS Genetics, 2021, 17, e1009848.	3.5	13
58	Providing comprehensive genetic-based ophthalmic care. Clinical Genetics, 2013, 84, 183-189.	2.0	12
59	Peripheral Visual Fields in ABCA4 Stargardt Disease and Correlation With Disease Extent on Ultra-widefield Fundus Autofluorescence. American Journal of Ophthalmology, 2017, 184, 181-188.	3.3	12
60	Peripheral Pigmented Retinal Lesions in Stargardt Disease. American Journal of Ophthalmology, 2018, 188, 104-110.	3.3	12
61	IFT88 mutations identified in individuals with non-syndromic recessive retinal degeneration result in abnormal ciliogenesis. Human Genetics, 2018, 137, 447-458.	3.8	11
62	Characterization of the Spectrum of Ophthalmic Changes in Patients With Alagille Syndrome., 2021, 62, 27.		11
63	Genetic testing for inherited retinal degenerations: Triumphs and tribulations. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2020, 184, 571-577.	1.6	10
64	Tissueâ€specific genotype–phenotype correlations among USH2Aâ€related disorders in the RUSH2A study. Human Mutation, 2022, 43, 613-624.	2.5	10
65	Cystoid macular changes on optical coherence tomography in a patient with maternally inherited diabetes and deafness (MIDD)-associated macular dystrophy. Ophthalmic Genetics, 2017, 38, 467-472.	1.2	9
66	Multimodal Imaging in Wagner Syndrome. Ophthalmic Surgery Lasers and Imaging Retina, 2016, 47, 574-579.	0.7	9
67	Reliability of kinetic visual field testing in children with mutation-proven retinal dystrophies: Implications for therapeutic clinical trials. Ophthalmic Genetics, 2018, 39, 22-28.	1.2	8
68	Comprehensive variant spectrum of the <i>CNGA3</i> gene in patients affected by achromatopsia. Human Mutation, 2022, 43, 832-858.	2.5	8
69	Molecular Findings in Families with an Initial Diagnose of Autosomal Dominant Retinitis Pigmentosa (adRP). Advances in Experimental Medicine and Biology, 2018, 1074, 237-245.	1.6	7
70	Association of No-Cost Genetic Testing Program Implementation and Patient Characteristics With Access to Genetic Testing for Inherited Retinal Degenerations. JAMA Ophthalmology, 2021, 139, 449.	2.5	6
71	The Ophthalmic Experience: Unanticipated Primary Findings in the Era of Next Generation Sequencing. Journal of Genetic Counseling, 2014, 23, 588-593.	1.6	5
72	Retinal Phenotype of an X-Linked Pseudo-usher Syndrome in Association with the G173R Mutation in the RPGR Gene. Advances in Experimental Medicine and Biology, 2008, 613, 221-227.	1.6	4

#	Article	IF	Citations
73	SAG., 2018, , 251-251.		3
74	Identification of Novel Deletions as the Underlying Cause of Retinal Degeneration in Two Pedigrees. Advances in Experimental Medicine and Biology, 2018, 1074, 229-236.	1.6	2
75	Double hyperautofluorescent ring on fundus autofluorescence in <i>ABCA4</i> . Ophthalmic Genetics, 2018, 39, 87-91.	1.2	2
76	Clinical trial design for neuroprotection in RHO autosomal dominant retinitis pigmentosa; outcome measure considerations. Ophthalmic Genetics, 2021, 42, 170-177.	1.2	2
77	The landscape of submicroscopic structural variants at the $\langle i \rangle$ OPN1LW/OPN1MW $\langle i \rangle$ gene cluster on Xq28 underlying blue cone monochromacy. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	2
78	RPGR., 2018,, 237-242.		1
79	A novel think tank program to promote innovation and strategic planning in ophthalmic surgery. Perioperative Care and Operating Room Management, 2021, 22, 100147.	0.3	1
80	ABCA4., 2018, , 1-5.		0
81	CLN3., 2018,, 59-60.		0
82	CNGA3., 2018,, 65-66.		0
83	CNGB3., 2018, , 71-74.		0
84	KLHL7., 2018,, 129-131.		0
85	RP2., 2018,, 229-231.		0
86	Adherence and satisfaction in Argus II prosthesis users: a self determination theory model. Ophthalmic Genetics, 2022, 43, 462-469.	1.2	0