
## **Karine Clement**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3587557/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Richness of human gut microbiome correlates with metabolic markers. Nature, 2013, 500, 541-546.                                                                                                             | 13.7 | 3,641     |
| 2  | A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature, 1998, 392, 398-401.                                                                                          | 13.7 | 2,112     |
| 3  | Dietary intervention impact on gut microbial gene richness. Nature, 2013, 500, 585-588.                                                                                                                     | 13.7 | 1,485     |
| 4  | <i>Akkermansia muciniphila</i> and improved metabolic health during a dietary intervention in obesity:<br>relationship with gut microbiome richness and ecology. Gut, 2016, 65, 426-436.                    | 6.1  | 1,379     |
| 5  | Differential Adaptation of Human Gut Microbiota to Bariatric Surgery–Induced Weight Loss. Diabetes, 2010, 59, 3049-3057.                                                                                    | 0.3  | 1,065     |
| 6  | Reduction of Macrophage Infiltration and Chemoattractant Gene Expression Changes in White<br>Adipose Tissue of Morbidly Obese Subjects After Surgery-Induced Weight Loss. Diabetes, 2005, 54,<br>2277-2286. | 0.3  | 992       |
| 7  | A frameshift mutation in human MC4R is associated with a dominant form of obesity. Nature Genetics, 1998, 20, 113-114.                                                                                      | 9.4  | 975       |
| 8  | Melanocortin-4 receptor mutations are a frequent and heterogeneous cause of morbid obesity.<br>Journal of Clinical Investigation, 2000, 106, 253-262.                                                       | 3.9  | 760       |
| 9  | Fibrosis and Adipose Tissue Dysfunction. Cell Metabolism, 2013, 18, 470-477.                                                                                                                                | 7.2  | 717       |
| 10 | Genetic deficiency and pharmacological stabilization of mast cells reduce diet-induced obesity and diabetes in mice. Nature Medicine, 2009, 15, 940-945.                                                    | 15.2 | 663       |
| 11 | Histopathological algorithm and scoring system for evaluation of liver lesions in morbidly obese patients. Hepatology, 2012, 56, 1751-1759.                                                                 | 3.6  | 657       |
| 12 | Weight loss regulates inflammationâ€related genes in white adipose tissue of obese subjects. FASEB<br>Journal, 2004, 18, 1657-1669.                                                                         | 0.2  | 569       |
| 13 | Gut microbiota and human NAFLD: disentangling microbial signatures from metabolic disorders.<br>Nature Reviews Gastroenterology and Hepatology, 2020, 17, 279-297.                                          | 8.2  | 539       |
| 14 | Gut microbiota-derived metabolites as central regulators in metabolic disorders. Gut, 2021, 70, 1174-1182.                                                                                                  | 6.1  | 519       |
| 15 | Increased Infiltration of Macrophages in Omental Adipose Tissue Is Associated With Marked Hepatic<br>Lesions in Morbid Human Obesity. Diabetes, 2006, 55, 1554-1561.                                        | 0.3  | 513       |
| 16 | Fibrosis in Human Adipose Tissue: Composition, Distribution, and Link With Lipid Metabolism and Fat<br>Mass Loss. Diabetes, 2010, 59, 2817-2825.                                                            | 0.3  | 511       |
| 17 | TM6SF2 rs58542926 influences hepatic fibrosis progression in patients with non-alcoholic fatty liver disease. Nature Communications, 2014, 5, 4309.                                                         | 5.8  | 478       |
| 18 | Human epicardial adipose tissue induces fibrosis of the atrial myocardium through the secretion of adipo-fibrokines. European Heart Journal, 2015, 36, 795-805.                                             | 1.0  | 423       |

| #  | Article                                                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Adipose tissue transcriptomic signature highlights the pathological relevance of extracellular<br>matrix in human obesity. Genome Biology, 2008, 9, R14.                                                                                                                      | 13.9 | 372       |
| 20 | Proopiomelanocortin Deficiency Treated with a Melanocortin-4 Receptor Agonist. New England<br>Journal of Medicine, 2016, 375, 240-246.                                                                                                                                        | 13.9 | 358       |
| 21 | Gut microbiota after gastric bypass in human obesity: increased richness and associations of bacterial genera with adipose tissue genes. American Journal of Clinical Nutrition, 2013, 98, 16-24.                                                                             | 2.2  | 351       |
| 22 | Review article: Is obesity an inflammatory illness? Role of low-grade inflammation and macrophage<br>infiltration in human white adipose tissue. BJOG: an International Journal of Obstetrics and<br>Gynaecology, 2006, 113, 1141-1147.                                       | 1.1  | 350       |
| 23 | Quantifying Diet-Induced Metabolic Changes of the Human Gut Microbiome. Cell Metabolism, 2015, 22, 320-331.                                                                                                                                                                   | 7.2  | 345       |
| 24 | Human Adipose Tissue Macrophages: M1 and M2 Cell Surface Markers in Subcutaneous and Omental<br>Depots and after Weight Loss. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 4619-4623.                                                                          | 1.8  | 318       |
| 25 | Major microbiota dysbiosis in severe obesity: fate after bariatric surgery. Gut, 2019, 68, 70-82.                                                                                                                                                                             | 6.1  | 297       |
| 26 | Statin therapy is associated with lower prevalence of gut microbiota dysbiosis. Nature, 2020, 581, 310-315.                                                                                                                                                                   | 13.7 | 283       |
| 27 | Genome-wide association study of non-alcoholic fatty liver and steatohepatitis in a histologically characterised cohortâ †. Journal of Hepatology, 2020, 73, 505-515.                                                                                                         | 1.8  | 279       |
| 28 | Macrophage-Secreted Factors Impair Human Adipogenesis: Involvement of Proinflammatory State in<br>Preadipocytes. Endocrinology, 2007, 148, 868-877.                                                                                                                           | 1.4  | 278       |
| 29 | Mucosal-associated invariant T cell alterations in obese and type 2 diabetic patients. Journal of Clinical Investigation, 2015, 125, 1752-1762.                                                                                                                               | 3.9  | 272       |
| 30 | Saturated Fat Is More Metabolically Harmful for the Human Liver Than Unsaturated Fat or Simple<br>Sugars. Diabetes Care, 2018, 41, 1732-1739.                                                                                                                                 | 4.3  | 266       |
| 31 | The gut microbiome, diet, and links to cardiometabolic and chronic disorders. Nature Reviews<br>Nephrology, 2016, 12, 169-181.                                                                                                                                                | 4.1  | 258       |
| 32 | Macrophage-Secreted Factors Promote a Profibrotic Phenotype in Human Preadipocytes. Molecular<br>Endocrinology, 2009, 23, 11-24.                                                                                                                                              | 3.7  | 236       |
| 33 | Efficacy and safety of setmelanotide, an MC4R agonist, in individuals with severe obesity due to LEPR<br>or POMC deficiency: single-arm, open-label, multicentre, phase 3 trials. Lancet Diabetes and<br>Endocrinology,the, 2020, 8, 960-970.                                 | 5.5  | 235       |
| 34 | MC4R agonism promotes durable weight loss in patients with leptin receptor deficiency. Nature<br>Medicine, 2018, 24, 551-555.                                                                                                                                                 | 15.2 | 219       |
| 35 | Melanocortin 4 Receptor Mutations in a Large Cohort of Severely Obese Adults: Prevalence,<br>Functional Classification, Genotype-Phenotype Relationship, and Lack of Association with Binge<br>Eating. Journal of Clinical Endocrinology and Metabolism, 2006, 91, 1811-1818. | 1.8  | 217       |
| 36 | The importance of the gut microbiota after bariatric surgery. Nature Reviews Gastroenterology and Hepatology, 2012, 9, 590-598.                                                                                                                                               | 8.2  | 216       |

| #  | Article                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Chronic intermittent hypoxia is a major trigger for non-alcoholic fatty liver disease in morbid obese.<br>Journal of Hepatology, 2012, 56, 225-233.                                                                                      | 1.8  | 214       |
| 38 | Transcriptomic profiling across the nonalcoholic fatty liver disease spectrum reveals gene signatures for steatohepatitis and fibrosis. Science Translational Medicine, 2020, 12, .                                                      | 5.8  | 205       |
| 39 | Defining macrophage phenotype and function in adipose tissue. Trends in Immunology, 2011, 32, 307-314.                                                                                                                                   | 2.9  | 200       |
| 40 | Evaluation of a melanocortin-4 receptor (MC4R) agonist (Setmelanotide) in MC4R deficiency.<br>Molecular Metabolism, 2017, 6, 1321-1329.                                                                                                  | 3.0  | 200       |
| 41 | T Cell–Derived IL-22 Amplifies IL-1β–Driven Inflammation in Human Adipose Tissue: Relevance to Obesity<br>and Type 2 Diabetes. Diabetes, 2014, 63, 1966-1977.                                                                            | 0.3  | 197       |
| 42 | Gut microbiota and non-alcoholic fatty liver disease: new insights. Clinical Microbiology and Infection, 2013, 19, 338-348.                                                                                                              | 2.8  | 196       |
| 43 | A PDGFRα-Mediated Switch toward CD9high Adipocyte Progenitors Controls Obesity-Induced Adipose<br>Tissue Fibrosis. Cell Metabolism, 2017, 25, 673-685.                                                                                   | 7.2  | 195       |
| 44 | From correlation to causality: the case of <i>Subdoligranulum</i> . Gut Microbes, 2020, 12, 1849998.                                                                                                                                     | 4.3  | 192       |
| 45 | CCL5 Promotes Macrophage Recruitment and Survival in Human Adipose Tissue. Arteriosclerosis,<br>Thrombosis, and Vascular Biology, 2010, 30, 39-45.                                                                                       | 1.1  | 190       |
| 46 | Impact of bacterial probiotics on obesity, diabetes and non-alcoholic fatty liver disease related<br>variables: a systematic review and meta-analysis of randomised controlled trials. BMJ Open, 2019, 9,<br>e017995.                    | 0.8  | 183       |
| 47 | Mutational analysis of melanocortin-4 receptor, agouti-related protein, and α-melanocyte-stimulating hormone genes in severely obese children. Journal of Pediatrics, 2001, 139, 204-209.                                                | 0.9  | 182       |
| 48 | Rare Genetic Forms of Obesity: Clinical Approach and Current Treatments in 2016. Obesity Facts, 2016, 9, 158-173.                                                                                                                        | 1.6  | 173       |
| 49 | Fate and Complex Pathogenic Effects of Dioxins and Polychlorinated Biphenyls in Obese Subjects before and after Drastic Weight Loss. Environmental Health Perspectives, 2011, 119, 377-383.                                              | 2.8  | 170       |
| 50 | Metabolism and Metabolic Disorders and the Microbiome: The Intestinal Microbiota Associated With<br>Obesity, Lipid Metabolism, and Metabolic Health—Pathophysiology and Therapeutic Strategies.<br>Gastroenterology, 2021, 160, 573-599. | 0.6  | 169       |
| 51 | Serum amyloid A: production by human white adipocyte and regulation by obesity and nutrition.<br>Diabetologia, 2005, 48, 519-528.                                                                                                        | 2.9  | 157       |
| 52 | Deciphering the cellular interplays underlying obesity-induced adipose tissue fibrosis. Journal of<br>Clinical Investigation, 2019, 129, 4032-4040.                                                                                      | 3.9  | 157       |
| 53 | Human epicardial adipose tissue has a specific transcriptomic signature depending on its anatomical peri-atrial, peri-ventricular, or peri-coronary location. Cardiovascular Research, 2015, 108, 62-73.                                 | 1.8  | 155       |
| 54 | Irf5 deficiency in macrophages promotes beneficial adipose tissue expansion and insulin sensitivity<br>during obesity. Nature Medicine, 2015, 21, 610-618.                                                                               | 15.2 | 149       |

| #          | Article                                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55         | Human Adipocytes Induce Inflammation and Atrophy in Muscle Cells During Obesity. Diabetes, 2015, 64, 3121-3134.                                                                                                                                                              | 0.3 | 146       |
| 56         | Treatment for 2 mo with nâ^'3 polyunsaturated fatty acids reduces adiposity and some atherogenic factors but does not improve insulin sensitivity in women with type 2 diabetes: a randomized controlled study. American Journal of Clinical Nutrition, 2007, 86, 1670-1679. | 2.2 | 146       |
| 5 <b>7</b> | Activin A Plays a Critical Role in Proliferation and Differentiation of Human Adipose Progenitors.<br>Diabetes, 2010, 59, 2513-2521.                                                                                                                                         | 0.3 | 140       |
| 58         | Mast Cells in Human Adipose Tissue: Link with Morbid Obesity, Inflammatory Status, and Diabetes.<br>Journal of Clinical Endocrinology and Metabolism, 2012, 97, E1677-E1685.                                                                                                 | 1.8 | 139       |
| 59         | Cathepsin S, a novel biomarker of adiposity: relevance to atherogenesis. FASEB Journal, 2005, 19, 1540-1542.                                                                                                                                                                 | 0.2 | 138       |
| 60         | Cathepsin S Promotes Human Preadipocyte Differentiation: Possible Involvement of Fibronectin<br>Degradation. Endocrinology, 2006, 147, 4950-4959.                                                                                                                            | 1.4 | 132       |
| 61         | Unraveling the Genetics of Human Obesity. PLoS Genetics, 2006, 2, e188.                                                                                                                                                                                                      | 1.5 | 130       |
| 62         | Jejunal T Cell Inflammation in Human Obesity Correlates with Decreased Enterocyte Insulin Signaling.<br>Cell Metabolism, 2015, 22, 113-124.                                                                                                                                  | 7.2 | 130       |
| 63         | Increased jejunal permeability in human obesity is revealed by a lipid challenge and is linked to inflammation and type 2 diabetes. Journal of Pathology, 2018, 246, 217-230.                                                                                                | 2.1 | 125       |
| 64         | The intestinal microbiota regulates host cholesterol homeostasis. BMC Biology, 2019, 17, 94.                                                                                                                                                                                 | 1.7 | 125       |
| 65         | Nonalcoholic Fatty Liver Disease: Modulating Gut Microbiota to Improve Severity?. Gastroenterology, 2020, 158, 1881-1898.                                                                                                                                                    | 0.6 | 123       |
| 66         | GLUT2 Accumulation in Enterocyte Apical and Intracellular Membranes. Diabetes, 2011, 60, 2598-2607.                                                                                                                                                                          | 0.3 | 122       |
| 67         | Imidazole propionate is increased in diabetes and associated with dietary patterns and altered microbial ecology. Nature Communications, 2020, 11, 5881.                                                                                                                     | 5.8 | 122       |
| 68         | Visceral Adipose Tissue Drives Cardiac Aging Through Modulation of Fibroblast Senescence by Osteopontin Production. Circulation, 2018, 138, 809-822.                                                                                                                         | 1.6 | 120       |
| 69         | The melanocortin pathway and energy homeostasis: From discovery to obesity therapy. Molecular<br>Metabolism, 2021, 48, 101206.                                                                                                                                               | 3.0 | 114       |
| 70         | Human adipocyte function is impacted by mechanical cues. Journal of Pathology, 2014, 233, 183-195.                                                                                                                                                                           | 2.1 | 112       |
| 71         | Dietary Patterns Differently Associate with Inflammation and Gut Microbiota in Overweight and Obese Subjects. PLoS ONE, 2014, 9, e109434.                                                                                                                                    | 1.1 | 111       |
| 72         | The Eating Inventory and Body Adiposity from Leanness to Massive Obesity: a Study of 2509 Adults.<br>Obesity, 2004, 12, 2023-2030.                                                                                                                                           | 4.0 | 108       |

| #  | Article                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Association of Adipose Tissue and Liver Fibrosis With Tissue Stiffness in Morbid Obesity: Links With<br>Diabetes and BMI Loss After Gastric Bypass. Journal of Clinical Endocrinology and Metabolism, 2014,<br>99, 898-907.          | 1.8  | 107       |
| 74 | Immune cell-derived cytokines contribute to obesity-related inflammation, fibrogenesis and metabolic deregulation in human adipose tissue. Scientific Reports, 2017, 7, 3000.                                                        | 1.6  | 106       |
| 75 | Adipocyte Size Threshold Matters: Link with Risk of Type 2 Diabetes and Improved Insulin Resistance<br>After Gastric Bypass. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E1466-E1470.                                | 1.8  | 105       |
| 76 | Micronutrient and Protein Deficiencies After Gastric Bypass and Sleeve Gastrectomy: a 1-year Follow-up. Obesity Surgery, 2016, 26, 785-796.                                                                                          | 1.1  | 104       |
| 77 | Molecular Genetics of Human Obesityâ€Associated MC4R Mutations. Annals of the New York Academy of Sciences, 2003, 994, 49-57.                                                                                                        | 1.8  | 102       |
| 78 | Combinatorial, additive and dose-dependent drug–microbiome associations. Nature, 2021, 600, 500-505.                                                                                                                                 | 13.7 | 102       |
| 79 | Microbiome and metabolome features of the cardiometabolic disease spectrum. Nature Medicine, 2022, 28, 303-314.                                                                                                                      | 15.2 | 102       |
| 80 | The advanced-DiaRem score improves prediction of diabetes remission 1Âyear post-Roux-en-Y gastric<br>bypass. Diabetologia, 2017, 60, 1892-1902.                                                                                      | 2.9  | 100       |
| 81 | C-reactive protein levels in relation to various features of non-alcoholic fatty liver disease among obese patients. Journal of Hepatology, 2011, 55, 660-665.                                                                       | 1.8  | 98        |
| 82 | Serum Amyloid A: A Marker of Adiposityâ€induced Lowâ€grade Inflammation but Not of Metabolic Status.<br>Obesity, 2006, 14, 309-318.                                                                                                  | 1.5  | 95        |
| 83 | Gut microbiota and obesity: Concepts relevant to clinical care. European Journal of Internal Medicine, 2018, 48, 18-24.                                                                                                              | 1.0  | 95        |
| 84 | Novel loci for childhood body mass index and shared heritability with adult cardiometabolic traits.<br>PLoS Genetics, 2020, 16, e1008718.                                                                                            | 1.5  | 95        |
| 85 | Effects of Diet-Modulated Autologous Fecal Microbiota Transplantation on Weight Regain.<br>Gastroenterology, 2021, 160, 158-173.e10.                                                                                                 | 0.6  | 95        |
| 86 | Association between omental adipose tissue macrophages and liver histopathology in morbid obesity:<br>Influence of glycemic status. Journal of Hepatology, 2009, 51, 354-362.                                                        | 1.8  | 92        |
| 87 | Profiling of the Three Circulating Monocyte Subpopulations in Human Obesity. Journal of<br>Immunology, 2015, 194, 3917-3923.                                                                                                         | 0.4  | 92        |
| 88 | Fecal Microbiota Transplantation: a Future Therapeutic Option for Obesity/Diabetes?. Current Diabetes<br>Reports, 2019, 19, 51.                                                                                                      | 1.7  | 91        |
| 89 | Long-term Relapse of Type 2 Diabetes After Roux-en-Y Gastric Bypass: Prediction and Clinical Relevance.<br>Diabetes Care, 2018, 41, 2086-2095.                                                                                       | 4.3  | 90        |
| 90 | Assessment of epicardial fat volume and myocardial triglyceride content in severely obese subjects:<br>relationship to metabolic profile, cardiac function and visceral fat. International Journal of Obesity,<br>2012, 36, 422-430. | 1.6  | 89        |

| #   | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Circulating phospholipid profiling identifies portal contribution to NASH signature in obesity.<br>Journal of Hepatology, 2015, 62, 905-912.                                                                                         | 1.8 | 89        |
| 92  | Accumulation and Changes in Composition of Collagens in Subcutaneous Adipose Tissue After<br>Bariatric Surgery. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 293-304.                                                | 1.8 | 87        |
| 93  | Nonalcoholic fatty liver disease and obstructive sleep apnea. Metabolism: Clinical and Experimental, 2016, 65, 1124-1135.                                                                                                            | 1.5 | 87        |
| 94  | Unexpected Endocrine Features and Normal Pigmentation in a Young Adult Patient Carrying a Novel<br>Homozygous Mutation in the POMC Gene. Journal of Clinical Endocrinology and Metabolism, 2008, 93,<br>4955-4962.                   | 1.8 | 86        |
| 95  | Synergistic convergence of microbiota-specific systemic IgG and secretory IgA. Journal of Allergy and Clinical Immunology, 2019, 143, 1575-1585.e4.                                                                                  | 1.5 | 86        |
| 96  | Genetics and the Pathophysiology of Obesity. Pediatric Research, 2003, 53, 721-725.                                                                                                                                                  | 1.1 | 85        |
| 97  | Secretory Type II Phospholipase A2 Is Produced and Secreted by Epicardial Adipose Tissue and Overexpressed in Patients with Coronary Artery Disease. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 963-967.            | 1.8 | 85        |
| 98  | Use of HOMA-IR to diagnose non-alcoholic fatty liver disease: a population-based and inter-laboratory study. Diabetologia, 2017, 60, 1873-1882.                                                                                      | 2.9 | 85        |
| 99  | Gut Microbiota Dysbiosis in Human Obesity: Impact of Bariatric Surgery. Current Obesity Reports, 2019,<br>8, 229-242.                                                                                                                | 3.5 | 85        |
| 100 | SMRT-GPS2 corepressor pathway dysregulation coincides with obesity-linked adipocyte inflammation.<br>Journal of Clinical Investigation, 2013, 123, 362-379.                                                                          | 3.9 | 83        |
| 101 | Regulation of inflammation-related genes in human adipose tissue. Journal of Internal Medicine, 2007, 262, 422-430.                                                                                                                  | 2.7 | 80        |
| 102 | FunNet: an integrative tool for exploring transcriptional interactions. Bioinformatics, 2008, 24, 2636-2638.                                                                                                                         | 1.8 | 78        |
| 103 | Knee and hip intra-articular adipose tissues (IAATs) compared with autologous subcutaneous adipose<br>tissue: a specific phenotype for a central player in osteoarthritis. Annals of the Rheumatic Diseases,<br>2017, 76, 1142-1148. | 0.5 | 78        |
| 104 | Comparative Evaluation of Microbiota Engraftment Following Fecal Microbiota Transfer in Mice<br>Models: Age, Kinetic and Microbial Status Matter. Frontiers in Microbiology, 2018, 9, 3289.                                          | 1.5 | 77        |
| 105 | Melanocortin-4 Receptor Mutations and Polymorphisms Do Not Affect Weight Loss after Bariatric Surgery. PLoS ONE, 2012, 7, e48221.                                                                                                    | 1.1 | 76        |
| 106 | Structural and inflammatory heterogeneity in subcutaneous adipose tissue: Relation with liver histopathology in morbid obesity. Journal of Hepatology, 2012, 56, 1152-1158.                                                          | 1.8 | 75        |
| 107 | Atrial natriuretic peptide regulates adipose tissue accumulation in adult atria. Proceedings of the<br>National Academy of Sciences of the United States of America, 2017, 114, E771-E780.                                           | 3.3 | 74        |
| 108 | T Cell Populations and Functions Are Altered in Human Obesity and Type 2 Diabetes. Current Diabetes<br>Reports, 2017, 17, 81.                                                                                                        | 1.7 | 71        |

| #   | Article                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Nonalcoholic Fatty Liver Disease, Nocturnal Hypoxia, and Endothelial Function in Patients With Sleep<br>Apnea. Chest, 2014, 145, 525-533.                                                                                                                            | 0.4 | 70        |
| 110 | Nutritional and Protein Deficiencies in the Short Term following Both Gastric Bypass and Gastric Banding. PLoS ONE, 2016, 11, e0149588.                                                                                                                              | 1.1 | 70        |
| 111 | The Effects of Gastrointestinal Surgery on Gut Microbiota: Potential Contribution to Improved Insulin Sensitivity. Current Atherosclerosis Reports, 2014, 16, 454.                                                                                                   | 2.0 | 68        |
| 112 | Effect of Bariatric Surgery-Induced Weight Loss on SR-BI-, ABCG1-, and ABCA1-Mediated Cellular<br>Cholesterol Efflux in Obese Women. Journal of Clinical Endocrinology and Metabolism, 2011, 96,<br>1151-1159.                                                       | 1.8 | 67        |
| 113 | Increased Basement Membrane Components in Adipose Tissue During Obesity: Links With TGFβ and<br>Metabolic Phenotypes. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 2578-2587.                                                                        | 1.8 | 67        |
| 114 | Acyl-CoA-Binding Protein Is a Lipogenic Factor that Triggers Food Intake and Obesity. Cell Metabolism, 2019, 30, 754-767.e9.                                                                                                                                         | 7.2 | 67        |
| 115 | Improvement of nonâ€invasive markers of NAFLD from an individualised, webâ€based exercise program.<br>Alimentary Pharmacology and Therapeutics, 2019, 50, 930-939.                                                                                                   | 1.9 | 67        |
| 116 | <i>Akkermansia muciniphila</i> abundance is lower in severe obesity, but its increased level after<br>bariatric surgery is not associated with metabolic health improvement. American Journal of<br>Physiology - Endocrinology and Metabolism, 2019, 317, E446-E459. | 1.8 | 67        |
| 117 | Needle and surgical biopsy techniques differentially affect adipose tissue gene expression profiles.<br>American Journal of Clinical Nutrition, 2009, 89, 51-57.                                                                                                     | 2.2 | 66        |
| 118 | Weight Loss Reduces Adipose Tissue Cathepsin S and Its Circulating Levels in Morbidly Obese Women.<br>Journal of Clinical Endocrinology and Metabolism, 2006, 91, 1042-1047.                                                                                         | 1.8 | 64        |
| 119 | Seven Novel Deleterious LEPR Mutations Found in Early-Onset Obesity: a ΔExon6–8 Shared by Subjects<br>From Reunion Island, France, Suggests a Founder Effect. Journal of Clinical Endocrinology and<br>Metabolism, 2015, 100, E757-E766.                             | 1.8 | 63        |
| 120 | Resistance Training and Protein Supplementation Increase Strength After Bariatric Surgery: A<br>Randomized Controlled Trial. Obesity, 2018, 26, 1709-1720.                                                                                                           | 1.5 | 63        |
| 121 | Mutational Analysis of the Pro-opiomelanocortin Gene in French Obese Children Led to the<br>Identification of a Novel Deleterious Heterozygous Mutation Located in the α-Melanocyte Stimulating<br>Hormone Domain. Pediatric Research, 2008, 63, 211-216.            | 1.1 | 62        |
| 122 | The FAT Score, a Fibrosis Score of Adipose Tissue: Predicting Weight-Loss Outcome After Gastric Bypass. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 2443-2453.                                                                                      | 1.8 | 62        |
| 123 | DAPK2 Downregulation Associates With Attenuated Adipocyte Autophagic Clearance in Human Obesity.<br>Diabetes, 2015, 64, 3452-3463.                                                                                                                                   | 0.3 | 61        |
| 124 | Rare melanocortin-3 receptor mutations with in vitro functional consequences are associated with human obesity. Human Molecular Genetics, 2011, 20, 392-399.                                                                                                         | 1.4 | 60        |
| 125 | Bariatric Surgery Induces Disruption in Inflammatory Signaling Pathways Mediated by Immune Cells in<br>Adipose Tissue: A RNA-Seq Study. PLoS ONE, 2015, 10, e0125718.                                                                                                | 1.1 | 60        |
| 126 | Systematic review of bariatric surgery liver biopsies clarifies the natural history of liver disease in patients with severe obesity. Gut, 2017, 66, 1688-1696.                                                                                                      | 6.1 | 59        |

| #   | Article                                                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Homozygous Null Mutation of the Melanocortin-4 Receptor and Severe Early-Onset Obesity. Journal of Pediatrics, 2007, 150, 613-617.e1.                                                                                                               | 0.9 | 58        |
| 128 | Human and preclinical studies of the host–gut microbiome co-metabolite hippurate as a marker and<br>mediator of metabolic health. Gut, 2021, 70, 2105-2114.                                                                                         | 6.1 | 58        |
| 129 | Adipocyte ATP-Binding Cassette G1 Promotes Triglyceride Storage, Fat Mass Growth, and Human<br>Obesity. Diabetes, 2015, 64, 840-855.                                                                                                                | 0.3 | 56        |
| 130 | Macrophage scavenger receptor 1 mediates lipid-induced inflammation in non-alcoholic fatty liver disease. Journal of Hepatology, 2022, 76, 1001-1012.                                                                                               | 1.8 | 54        |
| 131 | Impairment of gut microbial biotin metabolism and host biotin status in severe obesity: effect of biotin and prebiotic supplementation on improved metabolism. Gut, 2022, 71, 2463-2480.                                                            | 6.1 | 53        |
| 132 | Adipose tissue inflammation and liver pathology in human obesity. Diabetes and Metabolism, 2008, 34, 658-663.                                                                                                                                       | 1.4 | 52        |
| 133 | A Dietary Supplement Containing Cinnamon, Chromium and Carnosine Decreases Fasting Plasma<br>Glucose and Increases Lean Mass in Overweight or Obese Pre-Diabetic Subjects: A Randomized,<br>Placebo-Controlled Trial. PLoS ONE, 2015, 10, e0138646. | 1.1 | 52        |
| 134 | Risk assessment with gut microbiome and metabolite markers in NAFLD development. Science<br>Translational Medicine, 2022, 14, .                                                                                                                     | 5.8 | 50        |
| 135 | Association of poorly controlled diabetes with low serum leptin in morbid obesity. International<br>Journal of Obesity, 1997, 21, 556-561.                                                                                                          | 1.6 | 49        |
| 136 | Endothelial Cells From Visceral Adipose Tissue Disrupt Adipocyte Functions in a Three-Dimensional<br>Setting: Partial Rescue by Angiopoietin-1. Diabetes, 2014, 63, 535-549.                                                                        | 0.3 | 49        |
| 137 | High levels of CRP in morbid obesity: the central role of adipose tissue and lessons for clinical practice before and after bariatric surgery. Surgery for Obesity and Related Diseases, 2015, 11, 148-154.                                         | 1.0 | 49        |
| 138 | Adipose Tissue Fibrosis in Obesity: Etiology and Challenges. Annual Review of Physiology, 2022, 84, 135-155.                                                                                                                                        | 5.6 | 49        |
| 139 | Homozygous Leptin Receptor Mutation Due to Uniparental Disomy of Chromosome 1: Response to Bariatric Surgery. Journal of Clinical Endocrinology and Metabolism, 2013, 98, E397-E402.                                                                | 1.8 | 47        |
| 140 | Gut Microbiota Profile of Obese Diabetic Women Submitted to Roux-en-Y Gastric Bypass and Its Association with Food Intake and Postoperative Diabetes Remission. Nutrients, 2020, 12, 278.                                                           | 1.7 | 47        |
| 141 | Adipose Gene Expression Prior to Weight Loss Can Differentiate and Weakly Predict Dietary<br>Responders. PLoS ONE, 2007, 2, e1344.                                                                                                                  | 1.1 | 45        |
| 142 | Eating behaviour in obese patients with melanocortin-4 receptor mutations: a literature review.<br>International Journal of Obesity, 2013, 37, 1027-1035.                                                                                           | 1.6 | 45        |
| 143 | Senescence-associated $\hat{l}^2$ -galactosidase in subcutaneous adipose tissue associates with altered glycaemic status and truncal fat in severe obesity. Diabetologia, 2021, 64, 240-254.                                                        | 2.9 | 45        |
| 144 | Adipose Tissue Remodeling in Children: The Link between Collagen Deposition and Age-Related<br>Adipocyte Growth. Journal of Clinical Endocrinology and Metabolism, 2012, 97, 1320-1327.                                                             | 1.8 | 44        |

| #   | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Pregnancy in a Woman with a Leptin-Receptor Mutation. New England Journal of Medicine, 2012, 366, 1064-1065.                                                                                                                   | 13.9 | 43        |
| 146 | Emerging role of cathepsin S in obesity and its associated diseases. Clinical Chemistry and Laboratory Medicine, 2007, 45, 328-32.                                                                                             | 1.4  | 42        |
| 147 | AhR activation defends gut barrier integrity against damage occurring in obesity. Molecular<br>Metabolism, 2020, 39, 101007.                                                                                                   | 3.0  | 42        |
| 148 | Associations Between Genetic Obesity Susceptibility and Early Postnatal Fat and Lean Mass. JAMA<br>Pediatrics, 2014, 168, 1122.                                                                                                | 3.3  | 41        |
| 149 | Weight Loss, Xanthine Oxidase, and Serum Urate Levels: A Prospective Longitudinal Study of Obese<br>Patients. Arthritis Care and Research, 2016, 68, 1036-1042.                                                                | 1.5  | 40        |
| 150 | Single nucleotide polymorphisms of protein tyrosine phosphatase 1B gene are associated with obesity<br>in morbidly obese French subjects. Diabetologia, 2004, 47, 1278-1284.                                                   | 2.9  | 39        |
| 151 | A Data Integration Multi-Omics Approach to Study Calorie Restriction-Induced Changes in Insulin<br>Sensitivity. Frontiers in Physiology, 2018, 9, 1958.                                                                        | 1.3  | 39        |
| 152 | Hepatic stellate cell hypertrophy is associated with metabolic liver fibrosis. Scientific Reports, 2020, 10, 3850.                                                                                                             | 1.6  | 39        |
| 153 | Cardiac MR Strain: A Noninvasive Biomarker of Fibrofatty Remodeling of the Left Atrial Myocardium.<br>Radiology, 2018, 286, 83-92.                                                                                             | 3.6  | 38        |
| 154 | Prospective assessment and histological analysis of adherent perinephric fat in partial nephrectomies.<br>Urologic Oncology: Seminars and Original Investigations, 2017, 35, 39.e9-39.e17.                                     | 0.8  | 37        |
| 155 | Mucosalâ€essociated invariant T (MAIT) cells are depleted and prone to apoptosis in cardiometabolic<br>disorders. FASEB Journal, 2018, 32, 5078-5089.                                                                          | 0.2  | 37        |
| 156 | Prediction of Long-Term Diabetes Remission After RYGB, Sleeve Gastrectomy, and Adjustable Gastric<br>Banding Using DiaRem and Advanced-DiaRem Scores. Obesity Surgery, 2019, 29, 796-804.                                      | 1.1  | 37        |
| 157 | Serum lipidomics reveals early differential effects of gastric bypass compared with banding on phospholipids and sphingolipids independent of differences in weight loss. International Journal of Obesity, 2017, 41, 917-925. | 1.6  | 36        |
| 158 | Lipid-rich diet enhances L-cell density in obese subjects and in mice through improved L-cell differentiation. Journal of Nutritional Science, 2015, 4, e22.                                                                   | 0.7  | 34        |
| 159 | Interpretable and accurate prediction models for metagenomics data. GigaScience, 2020, 9, .                                                                                                                                    | 3.3  | 34        |
| 160 | Novel pharmacological MC4R agonists can efficiently activate mutated MC4R from obese patient with impaired endogenous agonist response. Journal of Endocrinology, 2010, 207, 177-183.                                          | 1.2  | 33        |
| 161 | Effect of Genotype and Previous GH Treatment on Adiposity in Adults With Prader-Willi Syndrome.<br>Journal of Clinical Endocrinology and Metabolism, 2016, 101, 4895-4903.                                                     | 1.8  | 33        |
| 162 | Adipose tissue autophagy status in obesity: Expression and flux—two faces of the picture. Autophagy,<br>2016, 12, 588-589.                                                                                                     | 4.3  | 33        |

| #   | Article                                                                                                                                                                                              | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Gut microbiota of obese subjects with Prader-Willi syndrome is linked to metabolic health. Gut, 2020, 69, 1229-1238.                                                                                 | 6.1 | 33        |
| 164 | Interactional and functional centrality in transcriptional co-expression networks. Bioinformatics, 2010, 26, 3083-3089.                                                                              | 1.8 | 32        |
| 165 | Dietary Assessment in the MetaCardis Study: Development and Relative Validity of an Online Food<br>Frequency Questionnaire. Journal of the Academy of Nutrition and Dietetics, 2017, 117, 878-888.   | 0.4 | 32        |
| 166 | Revealing links between gut microbiome and its fungal community in Type 2 Diabetes Mellitus among<br>Emirati subjects: A pilot study. Scientific Reports, 2020, 10, 9624.                            | 1.6 | 31        |
| 167 | MECHANISMS IN ENDOCRINOLOGY: Update on treatments for patients with genetic obesity. European Journal of Endocrinology, 2020, 183, R149-R166.                                                        | 1.9 | 31        |
| 168 | Relevance of omental pericellular adipose tissue collagen in the pathophysiology of human abdominal obesity and related cardiometabolic risk. International Journal of Obesity, 2016, 40, 1823-1831. | 1.6 | 30        |
| 169 | Long-term outcomes of bariatric surgery in patients with bi-allelic mutations in the POMC, LEPR, and MC4R genes. Surgery for Obesity and Related Diseases, 2021, 17, 1449-1456.                      | 1.0 | 29        |
| 170 | Medication Cost is Significantly Reduced After Roux-en-Y Gastric Bypass in Obese Patients. Obesity<br>Surgery, 2014, 24, 1896-1903.                                                                  | 1.1 | 28        |
| 171 | Hypoxia-inducible factor prolyl hydroxylase 1 (PHD1) deficiency promotes hepatic steatosis and liver-specific insulin resistance in mice. Scientific Reports, 2016, 6, 24618.                        | 1.6 | 28        |
| 172 | Losing weight for a better health: Role for the gut microbiota. Clinical Nutrition Experimental, 2016, 6, 39-58.                                                                                     | 2.0 | 28        |
| 173 | Rare genetic forms of obesity: From gene to therapy. Physiology and Behavior, 2020, 227, 113134.                                                                                                     | 1.0 | 28        |
| 174 | Circulating Blood Monocyte Subclasses and Lipid-Laden Adipose Tissue Macrophages in Human Obesity.<br>PLoS ONE, 2016, 11, e0159350.                                                                  | 1.1 | 28        |
| 175 | Promoter adiponectin polymorphisms and waist/hip ratio variation in a prospective French adults study. International Journal of Obesity, 2008, 32, 669-675.                                          | 1.6 | 27        |
| 176 | Impact of bariatric surgery on type 2 diabetes: contribution of inflammation and gut microbiome?.<br>Seminars in Immunopathology, 2019, 41, 461-475.                                                 | 2.8 | 27        |
| 177 | Phosphatidylglycerols are induced by gut dysbiosis and inflammation, and favorably modulate adipose tissue remodeling in obesity. FASEB Journal, 2019, 33, 4741-4754.                                | 0.2 | 27        |
| 178 | Bariatric surgery, adipose tissue and gut microbiota. International Journal of Obesity, 2011, 35, S7-S15.                                                                                            | 1.6 | 26        |
| 179 | Elevated serum ceramides are linked with obesity-associated gut dysbiosis and impaired glucose metabolism. Metabolomics, 2019, 15, 140.                                                              | 1.4 | 26        |
| 180 | Type 2 Diabetes Remission After Gastric Bypass: What Is the Best Prediction Tool for Clinicians?.<br>Obesity Surgery, 2015, 25, 1128-1132.                                                           | 1.1 | 25        |

| #   | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Type 2 diabetes is associated with impaired jejunal enteroendocrine GLP-1 cell lineage in human obesity.<br>International Journal of Obesity, 2021, 45, 170-183.                                              | 1.6 | 25        |
| 182 | Epicardial Fat Volume Is Associated With Coronary Microvascular Response in Healthy Subjects: A<br>Pilot Study. Obesity, 2012, 20, 1200-1205.                                                                 | 1.5 | 24        |
| 183 | Relative Adipose Tissue Failure in Alström Syndrome Drives Obesity-Induced Insulin Resistance.<br>Diabetes, 2021, 70, 364-376.                                                                                | 0.3 | 23        |
| 184 | Fibrosis as a Cause or a Consequence of White Adipose Tissue Inflammation in Obesity. Current Obesity Reports, 2013, 2, 1-9.                                                                                  | 3.5 | 22        |
| 185 | Persistence of severe liver fibrosis despite substantial weight loss with bariatric surgery. Hepatology, 2022, 76, 456-468.                                                                                   | 3.6 | 22        |
| 186 | Implication of Heterozygous Variants in Genes of the Leptin–Melanocortin Pathway in Severe Obesity.<br>Journal of Clinical Endocrinology and Metabolism, 2021, 106, 2991-3006.                                | 1.8 | 21        |
| 187 | Adaptive Expression of MicroRNA-125a in Adipose Tissue in Response to Obesity in Mice and Men. PLoS ONE, 2014, 9, e91375.                                                                                     | 1.1 | 21        |
| 188 | Autophagy inhibition blunts PDGFRA adipose progenitors' cell-autonomous fibrogenic response to<br>high-fat diet. Autophagy, 2020, 16, 2156-2166.                                                              | 4.3 | 20        |
| 189 | Increased serum miR-193a-5p during non-alcoholic fatty liver disease progression: Diagnostic and mechanistic relevance. JHEP Reports, 2022, 4, 100409.                                                        | 2.6 | 20        |
| 190 | Additive effect of A>G (-3826) variant of the uncoupling protein gene and the Trp64Arg mutation of the beta 3-adrenergic receptor gene on weight gain in morbid obesity. , 1996, 20, 1062-6.                  |     | 20        |
| 191 | Transcriptomic signatures of villous cytotrophoblast and syncytiotrophoblast in term human placenta. Placenta, 2016, 44, 83-90.                                                                               | 0.7 | 18        |
| 192 | COVIDâ€19 and its Severity in Bariatric Surgeryâ€Operated Patients. Obesity, 2021, 29, 24-28.                                                                                                                 | 1.5 | 18        |
| 193 | Rare genetic causes of obesity: Diagnosis and management in clinical care. Annales D'Endocrinologie, 2022, 83, 63-72.                                                                                         | 0.6 | 18        |
| 194 | A Melanocortin-4 Receptor Agonist Induces Skin and Hair Pigmentation in Patients with Monogenic<br>Mutations in the Leptin-Melanocortin Pathway. Skin Pharmacology and Physiology, 2021, 34, 307-316.         | 1.1 | 16        |
| 195 | Dysregulation of macrophage PEPD in obesity determines adipose tissue fibro-inflammation and insulin resistance. Nature Metabolism, 2022, 4, 476-494.                                                         | 5.1 | 16        |
| 196 | OBEDIS Core Variables Project: European Expert Guidelines on a Minimal Core Set of Variables to<br>Include in Randomized, Controlled Clinical Trials of Obesity Interventions. Obesity Facts, 2020, 13, 1-28. | 1.6 | 15        |
| 197 | Resting-state connectivity within the brain's reward system predicts weight loss and correlates with<br>leptin. Brain Communications, 2021, 3, fcab005.                                                       | 1.5 | 15        |
| 198 | Benefits of Iterative Searches of Large Databases to Interpret Large Human Gut Metaproteomic Data<br>Sets. Journal of Proteome Research, 2021, 20, 1522-1534.                                                 | 1.8 | 15        |

| #   | Article                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Gut microbiota and vitamin status in persons with obesity: A key interplay. Obesity Reviews, 2022, 23, e13377.                                                                                                                                                   | 3.1 | 15        |
| 200 | Long-Term Weight Outcome After Bariatric Surgery in Patients with Melanocortin-4 Receptor Gene<br>Variants: a Case–Control Study of 105 Patients. Obesity Surgery, 2022, 32, 837-844.                                                                            | 1.1 | 15        |
| 201 | The human gut microbiota contributes to type-2 diabetes non-resolution 5-years after Roux-en-Y gastric bypass. Gut Microbes, 2022, 14, 2050635.                                                                                                                  | 4.3 | 15        |
| 202 | Gut microbiota changes after metabolic surgery in adult diabetic patients with mild obesity: a randomised controlled trial. Diabetology and Metabolic Syndrome, 2021, 13, 56.                                                                                    | 1.2 | 14        |
| 203 | Comprehensive Wet-Bench and Bioinformatics Workflow for Complex Microbiota Using Oxford Nanopore Technologies. MSystems, 2021, 6, e0075021.                                                                                                                      | 1.7 | 14        |
| 204 | Quality of life outcomes in two phase 3 trials of setmelanotide in patients with obesity due to LEPR or POMC deficiency. Orphanet Journal of Rare Diseases, 2022, 17, 38.                                                                                        | 1.2 | 14        |
| 205 | Cathepsin S genotypes are associated with Apoâ€A1 and HDLâ€cholesterol in lean and obese French populations. Clinical Genetics, 2008, 74, 155-163.                                                                                                               | 1.0 | 13        |
| 206 | COVIDâ€19: A Lever for the Recognition of Obesity as a Disease? The French Experience. Obesity, 2020, 28, 1584-1585.                                                                                                                                             | 1.5 | 13        |
| 207 | Adipose tissue adaptive response to <i>trans</i> â€10, <i>cisâ€</i> 12â€conjugated linoleic acid engages<br>alternatively activated M2 macrophages. FASEB Journal, 2016, 30, 241-251.                                                                            | 0.2 | 12        |
| 208 | What Should I Eat and Why? The Environmental, Genetic, and Behavioral Determinants of Food Choice:<br>Summary from a Pennington Scientific Symposium. Obesity, 2020, 28, 1386-1396.                                                                              | 1.5 | 12        |
| 209 | Weight Loss After Sleeve Gastrectomy: Does Type 2 Diabetes Status Impact Weight and Body<br>Composition Trajectories?. Obesity Surgery, 2021, 31, 1046-1054.                                                                                                     | 1.1 | 12        |
| 210 | In obese and non-obese adults, the cis-regulatory rs361072 promoter variant of PIK3CB is associated with insulin resistance not with type 2 diabetes. Molecular Genetics and Metabolism, 2009, 96, 129-132.                                                      | 0.5 | 11        |
| 211 | Association between melanocortin-4 receptor mutations and eating behaviors in obese patients: a<br>case–control study. International Journal of Obesity, 2014, 38, 883-885.                                                                                      | 1.6 | 11        |
| 212 | AdipoScan: A Novel Transient Elastography-Based Tool Used to Non-Invasively Assess Subcutaneous<br>Adipose Tissue Shear Wave Speed in Obesity. Ultrasound in Medicine and Biology, 2016, 42, 2401-2413.                                                          | 0.7 | 11        |
| 213 | The Impact of the COVID-19 Lockdown on Weight Loss and Body Composition in Subjects with<br>Overweight and Obesity Participating in a Nationwide Weight-Loss Program: Impact of a Remote<br>Consultation Follow-Up—The CO-RNPC Study. Nutrients, 2021, 13, 2152. | 1.7 | 11        |
| 214 | Exploring Semi-Quantitative Metagenomic Studies Using Oxford Nanopore Sequencing: A<br>Computational and Experimental Protocol. Genes, 2021, 12, 1496.                                                                                                           | 1.0 | 11        |
| 215 | Adipose tissue gene expression in patients with a loss of function mutation in the leptin receptor.<br>International Journal of Obesity, 2002, 26, 1533-1538.                                                                                                    | 1.6 | 10        |
| 216 | The mid-infrared spectroscopy: A novel non-invasive diagnostic tool for NASH diagnosis in severe obesity. JHEP Reports, 2019, 1, 361-368.                                                                                                                        | 2.6 | 10        |

| #   | Article                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Effects of the COVID-19 pandemic and lockdown on the mental and physical health of adults with Prader-Willi syndrome. Orphanet Journal of Rare Diseases, 2021, 16, 202.                                                                                 | 1.2 | 10        |
| 218 | The multifaceted progenitor fates in healthy or unhealthy adipose tissue during obesity. Reviews in Endocrine and Metabolic Disorders, 2021, 22, 1111-1119.                                                                                             | 2.6 | 10        |
| 219 | Dietary Factors Impact on the Association between CTSS Variants and Obesity Related Traits. PLoS ONE, 2012, 7, e40394.                                                                                                                                  | 1.1 | 9         |
| 220 | Lysosomal Acid Lipase Drives Adipocyte Cholesterol Homeostasis and Modulates Lipid Storage in<br>Obesity, Independent of Autophagy. Diabetes, 2021, 70, 76-90.                                                                                          | 0.3 | 9         |
| 221 | Protein supplementation during an energy-restricted diet induces visceral fat loss and gut microbiota amino acid metabolism activation: a randomized trial. Scientific Reports, 2021, 11, 15620.                                                        | 1.6 | 9         |
| 222 | Cultural Influences on the Regulation of Energy Intake and Obesity: A Qualitative Study Comparing<br>Food Customs and Attitudes to Eating in Adults from France and the United States. Nutrients, 2021, 13,<br>63.                                      | 1.7 | 9         |
| 223 | A surrogate of Roux-en-Y gastric bypass (the enterogastro anastomosis surgery) regulates multiple beta-cell pathways during resolution of diabetes in ob/ob mice. EBioMedicine, 2020, 58, 102895.                                                       | 2.7 | 8         |
| 224 | Links between Insulin Resistance and Periodontal Bacteria: Insights on Molecular Players and<br>Therapeutic Potential of Polyphenols. Biomolecules, 2022, 12, 378.                                                                                      | 1.8 | 8         |
| 225 | Enteroendocrine System and Gut Barrier in Metabolic Disorders. International Journal of Molecular<br>Sciences, 2022, 23, 3732.                                                                                                                          | 1.8 | 8         |
| 226 | Characterization of the Gut Microbiota in Individuals with Overweight or Obesity during a<br>Real-World Weight Loss Dietary Program: A Focus on the Bacteroides 2 Enterotype. Biomedicines, 2022,<br>10, 16.                                            | 1.4 | 8         |
| 227 | Effect of COVID-19 Lockdowns on Physical Activity, Eating Behavior, Body Weight and Psychological Outcomes in a Post-Bariatric Cohort. Obesity Surgery, 2022, 32, 1-9.                                                                                  | 1.1 | 8         |
| 228 | Altered subcutaneous adipose tissue parameters after switching ART-controlled HIV+ patients to raltegravir/maraviroc. Aids, 2021, 35, 1625-1630.                                                                                                        | 1.0 | 7         |
| 229 | Clinical management of patients with genetic obesity during COVID-19 pandemic: position paper of the ESE Growth & Manp; Genetic Obesity COVID-19 Study Group and Rare Endo-ERN main thematic group on Growth and Obesity. Endocrine, 2021, 71, 653-662. | 1.1 | 6         |
| 230 | Protein Intake, Metabolic Status and the Gut Microbiota in Different Ethnicities: Results from Two<br>Independent Cohorts. Nutrients, 2021, 13, 3159.                                                                                                   | 1.7 | 6         |
| 231 | C1431T Variant of PPARÎ <sup>3</sup> Is Associated with Preeclampsia in Pregnant Women. Life, 2021, 11, 1052.                                                                                                                                           | 1.1 | 6         |
| 232 | Fibrogenesis Marker PRO-C3 Is Higher in Advanced Liver Fibrosis and Improves in Patients Undergoing<br>Bariatric Surgery. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e1356-e1366.                                                     | 1.8 | 6         |
| 233 | Beta-hydroxybutyrate dampens adipose progenitors' profibrotic activation through canonical Tgfβ<br>signaling and non-canonical ZFP36-dependent mechanisms. Molecular Metabolism, 2022, 61, 101512.                                                      | 3.0 | 6         |
| 234 | Obesity Due to Steroid Receptor Coactivator-1 Deficiency Is Associated With Endocrine and Metabolic<br>Abnormalities. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e2532-e2544.                                                         | 1.8 | 5         |

# ARTICLE IF CITATIONS Intermittent Hypoxia Rewires the Liver Transcriptome and Fires up Fatty Acids Usage for 1.2 Mitochondrial Respiration. Frontiers in Medicine, 2022, 9, 829979. The fused lasso penalty for learning interpretable medical scoring systems., 2017,,. 236 4 Abdominal adipose tissue components quantification in MRI as a relevant biomarker of metabolic 1.0 profile. Magnetic Resonance Imaging, 2021, 80, 14-20. Intestinal alteration of 1±-gustducin and sweet taste signaling pathway in metabolic diseases is partly rescued after weight loss and diabetes remission. American Journal of Physiology - Endocrinology and 238 1.8 4 Metabolism, 2021, 321, E417-E432. Hnf4g invalidation prevents diet-induced obesity via intestinal lipid malabsorption. Journal of 1.2 Endocrinology, 2022, 252, 31-44. Human catalase gene promoter haplotype and cardiometabolic improvement after bariatric surgery. 240 1.0 3 Gene, 2018, 656, 17-21. A place for vitamin supplementation and functional food in bariatric surgery?. Current Opinion in 241 1.3 Clinical Nutrition and Metabolic Care, 2019, 22, 442-448. PAF signaling plays a role in obesity-induced adipose tissue remodeling. International Journal of 242 1.6 3 Obesity, 2022, 46, 68-76. Obesity-Related Adipose Tissue Remodeling in the Light of Extracellular Mitochondria Transfer. 1.8 International Journal of Molecular Sciences, 2022, 23, 632. 244 Reply to C Matuchansky. American Journal of Clinical Nutrition, 2014, 99, 650-651. 2.2 9 AdipoScan™ - A novel transient elastography based tool to assess subcutaneous adipose tissue shear wave speed in morbidly obese patients. , 2014, , . Adipose tissue fibrosis assessed by high resolution ex vivo MRI as a hallmark of tissue alteration in 246 1.1 2 morbid obesity. Quantitative Imaging in Medicine and Surgery, 2021, 11, 2162-2168. Le prélà vement de tissu adipeux: un acte médical pour la recherche clinique. Perspectives pour le soin 247 0.1 courant. Obesite, 2013, 8, 222-227. Vers de nouveaux phénotypes et de nouvelles nosographiesÂ: de l'obésité aux maladies du tissu adipeux 248 1 Cahiers De Nutrition Et De Dietetique, 2014, 49, 104-112. Timing of Onset of Adverse Events With Setmelanotide, an MC4R Agonist, in Patients With Severe 0.1 Obesity Due to LEPR or POMC Deficiency. Journal of the Endocrine Society, 2021, 5, A30-A31. Fibrose du tissu adipeux chez l'obèse : nouveaux aspects. Bulletin De L'Academie Nationale De Medecine, 250 0.0 1 2017, 201, 755-763. Quelle implication pour la cathepsine S dans l'obésité ?. Obesite, 2007, 2, 260-264. 251 0.1

**KARINE CLEMENT** 

252Response to Comment on Pellegrinelli et al. Human Adipocytes Induce Inflammation and Atrophy in<br/>Muscle Cells During Obesity. Diabetes 2015;64:3121â€"3134. Diabetes, 2015, 64, e23-e24.0.30

| #   | Article                                                                                                                                                                               | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 253 | Sparse Zero-Sum Games as Stable Functional Feature Selection. PLoS ONE, 2015, 10, e0134683.                                                                                           | 1.1 | Ο         |
| 254 | Le microbiote intestinal : un nouvel acteur de la nutrition ?. Cahiers De Nutrition Et De Dietetique, 2015, 50, 6S22-6S29.                                                            | 0.2 | 0         |
| 255 | L'intelligence artificielle au service des maladies métaboliques. Medecine Des Maladies Metaboliques,<br>2021, 15, 70-79.                                                             | 0.1 | 0         |
| 256 | Obésités rares. , 2021, , 381-390.                                                                                                                                                    |     | 0         |
| 257 | Histoire naturelle et trajectoires des obésités. , 2021, , 137-146.                                                                                                                   |     | 0         |
| 258 | L'intelligence artificielle au service de l'obésité. , 2021, , 645-650.                                                                                                               |     | 0         |
| 259 | Severe Obesity Is Associated with Altered Gut Microbiota Biotin Metabolism and Host Biotin Status.<br>FASEB Journal, 2021, 35, .                                                      | 0.2 | 0         |
| 260 | Obésité et Covid-19. , 2021, , 341-345.                                                                                                                                               |     | 0         |
| 261 | Into the wild: early time-window for wild microbes to confer resistance to obesity. Nature Reviews Endocrinology, 2021, 17, 711-712.                                                  | 4.3 | 0         |
| 262 | Prospective assessment of the adherent perinephric fat in partial nephrectomies: Predictors and impact on peri-operative outcomes Journal of Clinical Oncology, 2016, 34, 543-543.    | 0.8 | 0         |
| 263 | Ein individualisiertes 8-wöchiges Sportprogramm verbessert bei Patienten mit NAFLD die hepatische<br>Fibrose und Inflammation und steigert die Vielfalt des Mikrobioms. , 2019, 57, . |     | Ο         |
| 264 | Récepteur MC4RÂ: actualités de la recherche dans l'obésité et potentiels développements<br>thérapeutiques. Medecine Des Maladies Metaboliques, 2020, 14, 632-638.                     | 0.1 | 0         |