
Michel F Audiffren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3587293/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Training Willpower: Reducing Costs and Valuing Effort. Frontiers in Neuroscience, 2022, 16, 699817.	2.8	4
2	The moderating effect of BDNF Val66Met polymorphism on inhibitory control in elderly individuals. , 2021, , 79-89.		1
3	Acute Effects of Low- and High-Speed Resistance Exercise on Cognitive Function in Frail Older Nursing-Home Residents: A Randomized Crossover Study. Journal of Aging Research, 2021, 2021, 1-10.	0.9	5
4	No ego-depletion effect without a good control task. Psychology of Sport and Exercise, 2021, 57, 102033.	2.1	14
5	Working Memory Resource Depletion Effect in Academic Learning: Steps to an Integrated Approach. Communications in Computer and Information Science, 2020, , 13-26.	0.5	1
6	The exercise–cognition relationship: A virtuous circle. Journal of Sport and Health Science, 2019, 8, 339-347.	6.5	57
7	Working Memory, Cognitive Load and Cardiorespiratory Fitness: Testing the CRUNCH Model with Near-Infrared Spectroscopy. Brain Sciences, 2019, 9, 38.	2.3	27
8	An Integrative Model of Effortful Control. Frontiers in Systems Neuroscience, 2019, 13, 79.	2.5	36
9	Efficiency of Sensorimotor Networks: Posture and Gait in Young and Older Adults. Experimental Aging Research, 2019, 45, 41-56.	1.2	14
10	The impact of physical activity and sex differences on intraindividual variability in inhibitory performance in older adults. Aging, Neuropsychology, and Cognition, 2019, 26, 1-23.	1.3	15
11	Dietary patterns in french home-living older adults: Results from the PRAUSE study. Archives of Gerontology and Geriatrics, 2018, 74, 88-93.	3.0	5
12	Cognitive Strategies and Physical Activity in Older Adults: A Discriminant Analysis. Journal of Aging Research, 2018, 2018, 1-9.	0.9	8
13	Dietary patterns in French home-living older adults: Results from the PRAUSE study. Archives of Gerontology and Geriatrics, 2017, 70, 180-185.	3.0	5
14	Use of near-infrared spectroscopy in the investigation of brain activation during cognitive aging: A systematic review of an emerging area of research. Ageing Research Reviews, 2017, 38, 52-66.	10.9	58
15	Resting Heart Rate Predicts Depression and Cognition Early after Ischemic Stroke: A Pilot Study. Journal of Stroke and Cerebrovascular Diseases, 2017, 26, 2435-2441.	1.6	20
16	Contribution of four lifelong factors of cognitive reserve on late cognition in normal aging and Parkinson's disease. Journal of Clinical and Experimental Neuropsychology, 2017, 39, 142-162.	1.3	35
17	Interaction between BDNF Polymorphism and Physical Activity on Inhibitory Performance in the Elderly without Cognitive Impairment. Frontiers in Human Neuroscience, 2017, 11, 541.	2.0	14
18	Assessing Muscular Oxygenation During Incremental Exercise Using Near-Infrared Spectroscopy: Comparison of Three Different Methods. Physiological Research, 2017, 66, 979-985.	0.9	13

MICHEL F AUDIFFREN

#	Article	IF	CITATIONS
19	The Reticular-Activating Hypofrontality (RAH) Model of Acute Exercise. , 2016, , 147-166.		13
20	Executive functions improvement following a 5-month aquaerobics program in older adults: Role of cardiac vagal control in inhibition performance. Biological Psychology, 2016, 115, 69-77.	2.2	70
21	Effects of BDNF polymorphism and physical activity on episodic memory in the elderly: a cross sectional study. European Review of Aging and Physical Activity, 2015, 12, 15.	2.9	49
22	The strength model of self-control revisited: Linking acute and chronic effects of exercise on executive functions. Journal of Sport and Health Science, 2015, 4, 30-46.	6.5	84
23	Effect of overreaching on cognitive performance and related cardiac autonomic control. Scandinavian Journal of Medicine and Science in Sports, 2014, 24, 234-242.	2.9	60
24	Dual-task Performance in Young and Older Adults: Speed-Accuracy Tradeoffs in Choice Responding While Treadmill Walking. Journal of Aging and Physical Activity, 2014, 22, 557-563.	1.0	20
25	Overcoming Barriers. Medicine and Science in Sports and Exercise, 2014, 46, 468.	0.4	Ο
26	Night and postexercise cardiac autonomic control in functional overreaching. Applied Physiology, Nutrition and Metabolism, 2013, 38, 200-208.	1.9	30
27	Further Evidence of Independence Between the Motive to Achieve Success and the Motive to Avoid Failure: A Confirmatory Factor Analysis. Psychologica Belgica, 2013, 51, 93.	1.9	Ο
28	Swimming as a Positive Moderator of Cognitive Aging: A Cross-Sectional Study with a Multitask Approach. Journal of Aging Research, 2012, 2012, 1-12.	0.9	15
29	Impact of Physical Activity on Executive Functions in Aging: A Selective Effect on Inhibition Among Old Adults. Journal of Sport and Exercise Psychology, 2012, 34, 808-827.	1.2	78
30	Reliability of heart rate measures used to assess postâ€exercise parasympathetic reactivation. Clinical Physiology and Functional Imaging, 2012, 32, 296-304.	1.2	53
31	Processing speed and executive functions in cognitive aging: How to disentangle their mutual relationship?. Brain and Cognition, 2012, 79, 1-11.	1.8	156
32	Vieillissement, exercice et cognitionÂ: les connexions entre cÅ"ur et cerveau. , 2012, , 199-215.		0
33	Good Physical Fitness Counteracts Deleterious Effect Of Aging On Executive Functions: A Cross-sectional Study. Medicine and Science in Sports and Exercise, 2011, 43, 260.	0.4	0
34	Evaluation Of VO2max By Field Tests In Older People: Effects Of 2 Different Exercise Programs. Medicine and Science in Sports and Exercise, 2011, 43, 935.	0.4	0
35	Does Acute Exercise Switch Off Switch Costs? A Study With Younger and Older Athletes. Journal of Sport and Exercise Psychology, 2011, 33, 609-626.	1.2	67
36	The reticular-activating hypofrontality (RAH) model of acute exercise. Neuroscience and Biobehavioral Reviews, 2011, 35, 1305-1325.	6.1	261

MICHEL F AUDIFFREN

#	Article	IF	CITATIONS
37	Increased heart rate variability and executive performance after aerobic training in the elderly. European Journal of Applied Physiology, 2010, 109, 617-624.	2.5	160
38	Effects of Acute Exercise on Sensory and Executive Processing Tasks. Medicine and Science in Sports and Exercise, 2010, 42, 1396-1402.	0.4	88
39	Acute aerobic exercise and information processing: Modulation of executive control in a Random Number Generation task. Acta Psychologica, 2009, 132, 85-95.	1.5	101
40	How does achievement motivation influence mental effort mobilization? Physiological evidence of deteriorative effects of negative affects on thelevel of engagement. International Journal of Psychophysiology, 2009, 74, 236-242.	1.0	7
41	Acute aerobic exercise and information processing: Energizing motor processes during a choice reaction time task. Acta Psychologica, 2008, 129, 410-419.	1.5	138
42	The effects of achievement motivation, task difficulty, and goal difficulty on physiological, behavioral, and subjective effort. Psychophysiology, 2008, 45, 859-868.	2.4	34
43	The interactive effect of achievement motivation and task difficulty on mental effort. International Journal of Psychophysiology, 2008, 70, 144-150.	1.0	59
44	Overproduction Timing Errors in Expert Dancers. Journal of Motor Behavior, 2008, 40, 291-300.	0.9	16
45	The Immediate and Delayed Effects of Acute Exercise on Low- and High-level Processing Tasks. Medicine and Science in Sports and Exercise, 2008, 40, S90.	0.4	1
46	Étude des processus de génération et d'inhibition des ajustements posturaux anticipés lors d'un paradigme stop. Science Et Motricite, 2008, , 83-92.	0.3	1
47	Perceptual factors contribute to akinesia in Parkinson's disease. Experimental Brain Research, 2007, 179, 245-253.	1.5	8
48	Facilitating Effect of Acute Exercise on Choice Reaction Time. Medicine and Science in Sports and Exercise, 2007, 39, S329.	0.4	0
49	A distributional analysis of the effect of physical exercise on a choice reaction time task. Journal of Sports Sciences, 2006, 24, 323-329.	2.0	63
50	Physical exercise facilitates motor processes in simple reaction time performance: An electromyographic analysis. Neuroscience Letters, 2006, 396, 54-56.	2.1	80
51	Information processing during physical exercise: a chronometric and electromyographic study. Experimental Brain Research, 2005, 165, 532-540.	1.5	94
52	Facilitating effects of exercise on information processing. Journal of Sports Sciences, 2004, 22, 419-428.	2.0	122
53	The effect of expertise on spatial and temporal representations of a choreographed dance solo. International Journal of Sport and Exercise Psychology, 2003, 1, 372-389.	2.1	3
54	Effects of a low dose of transdermal nicotine on information processing. Nicotine and Tobacco Research, 2002, 4, 275-285.	2.6	17

4

MICHEL F AUDIFFREN

#	Article	IF	CITATIONS
55	Single and choice reaction time during prolonged exercise in trained subjects: influence of carbohydrate availability. European Journal of Applied Physiology, 2001, 86, 150-156.	2.5	69
56	Local Muscular Fatigue and Attentional Processes in a Fencing Task. Perceptual and Motor Skills, 2000, 90, 315-318.	1.3	3
57	Coût attentionnel d'une tâche de pédalage en fonction de l'intensité de l'exercice. Science and Sports, 1998, 13, 81-83.	0.5	4
58	Age-Related Differences in the Preparatory Processes of Motor Programming. Journal of Experimental Child Psychology, 1998, 69, 49-65.	1.4	25
59	Age Differences in Using Precued Information to Preprogram Interception of a Ball. Perceptual and Motor Skills, 1997, 85, 123-127.	1.3	9
60	Influence of Physical Exercise on Simple Reaction Time: Effect of Physical Fitness. Perceptual and Motor Skills, 1997, 85, 1019-1027.	1.3	105
61	The Attentional Cost of Amplitude and Directional Requirements When Pointing to Targets. Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology, 1994, 47, 481-495.	2.3	19
62	Summary and Direction for Future Research. , 0, , 307-317.		1
63	A Chronometric and Electromyographic Approach to the Effect of Exercise on Reaction Time. , 0, , 153-159.		1