
Hiroki Miura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3587111/publications.pdf Version: 2024-02-01

Ηιροκι Μιμρλ

#	Article	IF	CITATIONS
1	Supported Palladium–Gold Alloy Catalysts for Efficient and Selective Hydrosilylation under Mild Conditions with Isolated Single Palladium Atoms in Alloy Nanoparticles as the Main Active Site. ACS Catalysis, 2017, 7, 1543-1553.	11.2	115
2	Elucidating strong metal-support interactions in Pt–Sn/SiO2 catalyst and its consequences for dehydrogenation of lower alkanes. Journal of Catalysis, 2018, 365, 277-291.	6.2	84
3	Strong metal-support interaction between Pt and SiO ₂ following high-temperature reduction: a catalytic interface for propane dehydrogenation. Chemical Communications, 2017, 53, 6937-6940.	4.1	61
4	Dehydrogenative synthesis of benzimidazoles under mild conditions with supported iridium catalysts. Catalysis Science and Technology, 2016, 6, 1677-1684.	4.1	59
5	Dynamic Behavior of Rh Species in Rh/Al ₂ O ₃ Model Catalyst during Three-Way Catalytic Reaction: An <i>Operando</i> X-ray Absorption Spectroscopy Study. Journal of the American Chemical Society, 2018, 140, 176-184.	13.7	55
6	Recyclable Solid Ruthenium Catalysts for the Direct Arylation of Aromatic Cï£;H Bonds. Chemistry - A European Journal, 2010, 16, 4186-4189.	3.3	53
7	Experimental and Theoretical Investigation of the Role of Bismuth in Promoting the Selective Oxidation of Glycerol over Supported Pt–Bi Catalyst under Mild Conditions. ACS Catalysis, 2020, 10, 6071-6083.	11.2	50
8	Dehydrogenation of Propane over Silica‣upported Platinum–Tin Catalysts Prepared by Direct Reduction: Effects of Tin/Platinum Ratio and Reduction Temperature. ChemCatChem, 2014, 6, 2680-2691.	3.7	49
9	Recyclable Solid Ruthenium Catalysts Supported on Metal Oxides for the Addition of Carboxylic Acids to Terminal Alkynes. Advanced Synthesis and Catalysis, 2010, 352, 3045-3052.	4.3	44
10	Active Ruthenium Catalysts Based on Phosphine-Modified Ru/CeO ₂ for the Selective Addition of Carboxylic Acids to Terminal Alkynes. ACS Catalysis, 2012, 2, 1753-1759.	11.2	41
11	Selective hydrogenolysis of tetrahydrofurfuryl alcohol on Pt/WO 3 /ZrO 2 catalysts: Effect of WO 3 loading amount on activity. Catalysis Today, 2018, 303, 207-212.	4.4	40
12	Carboxylate-Directed Addition of Aromatic C–H Bond to Aromatic Aldehydes under Ruthenium Catalysis. ACS Catalysis, 2018, 8, 6246-6254.	11.2	39
13	Intermolecular [2+2+1] Carbonylative Cycloaddition of Aldehydes with Alkynes, and Subsequent Oxidation to γâ€Hydroxybutenolides by a Supported Ruthenium Catalyst. Angewandte Chemie - International Edition, 2016, 55, 278-282.	13.8	38
14	A heterogeneous Ru/CeO2 catalyst effective for transfer-allylation from homoallyl alcohols to aldehydes. Chemical Communications, 2009, , 4112.	4.1	37
15	Highly Efficient Supported Palladium–Gold Alloy Catalysts for Hydrogen Storage Based on Ammonium Bicarbonate/Formate Redox Cycle. ACS Sustainable Chemistry and Engineering, 2019, 7, 6522-6530.	6.7	37
16	Catalysis of Cu Cluster for NO Reduction by CO: Theoretical Insight into the Reaction Mechanism. ACS Omega, 2019, 4, 2596-2609.	3.5	36
17	Ruthenium atalyzed Intermolecular Hydroacylation of Internal Alkynes: The Use of Ceria‧upported Catalyst Facilitates the Catalyst Recycling. Chemistry - A European Journal, 2013, 19, 861-864.	3.3	35
18	Iridiumâ€Catalyzed [2+2+2] Cycloaddition of α,ï‰â€Diynes with Cyanamides. Advanced Synthesis and Catalysis 2015, 357, 3901-3916.	^{5,} 4.3	35

Hiroki Miura

#	Article	IF	CITATIONS
19	Concerted Catalysis by Adjacent Palladium and Gold in Alloy Nanoparticles for the Versatile and Practical [2+2+2] Cycloaddition of Alkynes. Angewandte Chemie - International Edition, 2018, 57, 6136-6140.	13.8	35
20	Ruthenium-Catalyzed Addition of Aromatic Amides to Internal Alkynes and Subsequent Intramolecular Cyclization for the Atom-Economical Synthesis of Isoindolinones. Journal of Organic Chemistry, 2017, 82, 1231-1239.	3.2	32
21	Ceria-supported ruthenium catalysts for the synthesis of indole via dehydrogenative N-heterocyclization. Catalysis Science and Technology, 2011, 1, 1340.	4.1	31
22	Coupling of carboxylic acids with internal alkynes by supported ruthenium catalysts: direct and selective syntheses of multi-substituted phthalide derivatives. Chemical Communications, 2015, 51, 1654-1657.	4.1	31
23	Ag Size/Structure-Dependent Effect on Low-Temperature Selective Catalytic Oxidation of NH ₃ over Ag/MnO ₂ . ACS Catalysis, 2021, 11, 8576-8584.	11.2	31
24	Selective catalytic oxidation of ammonia to nitrogen over zeolite-supported Pt-Au catalysts: Effects of alloy formation and acid sites. Journal of Catalysis, 2021, 402, 101-113.	6.2	30
25	Investigation of the mechanism of the selective hydrogenolysis of C O bonds over a Pt/WO3/Al2O3 catalyst. Catalysis Today, 2020, 352, 73-79.	4.4	29
26	Catalytic Addition of Aromatic CH Bonds to Vinylsilanes in the Presence of Ru/CeO ₂ . ChemCatChem, 2010, 2, 1223-1225.	3.7	28
27	Highly Active and Stable Pt–Sn/SBA-15 Catalyst Prepared by Direct Reduction for Ethylbenzene Dehydrogenation: Effects of Sn Addition. Industrial & Engineering Chemistry Research, 2017, 56, 7160-7172.	3.7	28
28	Metal–support cooperation in Al(PO3)3-supported platinum nanoparticles for the selective hydrogenolysis of phenols to arenes. Nature Catalysis, 2021, 4, 312-321.	34.4	28
29	Effect of WO ₃ Loading on the Activity of Pt/WO ₃ /Al ₂ O ₃ Catalysts in Selective Hydrogenolysis of Glycerol to 1,3-Propanediol. Chemistry Letters, 2017, 46, 1497-1500.	1.3	24
30	One-pot synthesis of lactic acid from glycerol over a Pt/L-Nb2O5 catalyst under base-free conditions. Fuel Processing Technology, 2020, 197, 106202.	7.2	24
31	Intermolecular Coupling of Alkynes with Acrylates by Recyclable Oxideâ€Supported Ruthenium Catalysts: Formation of Distorted Ruthenium(IV)â€oxo Species on Ceria as a Key Precursor of Active Species. Advanced Synthesis and Catalysis, 2011, 353, 2837-2843.	4.3	23
32	Concerted Functions of Surface Acid–Base Pairs and Supported Copper Catalysts for Dehydrogenative Synthesis of Esters from Primary Alcohols. ACS Omega, 2017, 2, 6167-6173.	3.5	21
33	Hydrosilylation of Allenes Over Palladium–Gold Alloy Catalysts: Enhancing Activity and Switching Selectivity by the Incorporation of Palladium into Gold Nanoparticles. European Journal of Organic Chemistry, 2018, 2018, 1858-1862.	2.4	21
34	Effect of perimeter interface length between 2D WO ₃ monolayer domain and γ-Al ₂ O ₃ on selective hydrogenolysis of glycerol to 1,3-propanediol. Catalysis Science and Technology, 2019, 9, 5359-5367.	4.1	18
35	Quantitative Evaluation of the Effect of the Hydrophobicity of the Environment Surrounding BrÃ,nsted Acid Sites on Their Catalytic Activity for the Hydrolysis of Organic Molecules. Journal of the American Chemical Society, 2019, 141, 1636-1645.	13.7	18
36	Practical Synthesis of Allyl, Allenyl, and Benzyl Boronates through S _N 1â€2-Type Borylation under Heterogeneous Gold Catalysis. ACS Catalysis, 2021, 11, 758-766.	11.2	17

Hiroki Miura

#	Article	IF	CITATIONS
37	Development of Ceria-supported Ruthenium Catalysts for Green Organic Transformation Processes. Journal of the Japan Petroleum Institute, 2013, 56, 69-79.	0.6	16
38	Highly Selective Linear Dimerization of Styrenes by Ceria‣upported Ruthenium Catalysts. ChemCatChem, 2012, 4, 2062-2067.	3.7	15
39	Stereoselective synthesis of either (E)- or (Z)-silyl enol ether from the same acyclic α,β-unsaturated ketone using cationic rhodium complex-catalyzed 1,4-hydrosilylation. Tetrahedron Letters, 2014, 55, 310-313.	1.4	15
40	Understanding the Distinct Effects of Ag Nanoparticles and Highly Dispersed Ag Species on N ₂ Selectivity in NH ₃ –SCO Reaction. ACS Catalysis, 2022, 12, 6108-6118.	11.2	15
41	The importance of direct reduction in the synthesis of highly active Pt–Sn/SBA-15 for <i>n</i> -butane dehydrogenation. Catalysis Science and Technology, 2019, 9, 947-956.	4.1	14
42	BrÃ,nsted acid property of alumina-based mixed-oxides-supported tungsten oxide. Catalysis Today, 2021, 375, 64-69.	4.4	14
43	Silylation of Aryl Chlorides by Bimetallic Catalysis of Palladium and Gold on Alloy Nanoparticles. Advanced Synthesis and Catalysis, 2020, 362, 2642-2650.	4.3	13
44	Importance of the Pd and Surrounding Sites in Hydrosilylation of Internal Alkynes by Palladium–Gold Alloy Catalyst. Organometallics, 2020, 39, 528-537.	2.3	10
45	Direct Air Capture of CO ₂ Using a Liquid Amine–Solid Carbamic Acid Phase-Separation System Using Diamines Bearing an Aminocyclohexyl Group. ACS Environmental Au, 2022, 2, 354-362.	7.0	10
46	Concerted Catalysis by Adjacent Palladium and Gold in Alloy Nanoparticles for the Versatile and Practical [2+2+2] Cycloaddition of Alkynes. Angewandte Chemie, 2018, 130, 6244-6248.	2.0	8
47	Ruthenium atalyzed Synthesis of Isoindolinones via Amideâ€Directed Addition of Aromatic Câ€H Bonds to Aldimines. European Journal of Organic Chemistry, 2019, 2019, 2807-2811.	2.4	8
48	Highly active and durable WO ₃ /Al ₂ O ₃ catalysts for gas-phase dehydration of polyols. RSC Advances, 2020, 10, 37538-37544.	3.6	8
49	Concerted Catalysis of Pd and Au on Alloy Nanoparticles for Efficient Heterogeneous Molecular Transformations. Chemistry Letters, 2021, 50, 346-352.	1.3	7
50	Phosphine-stabilized, oxide-supported rhodium catalysts for highly efficient silylative coupling reactions. Research on Chemical Intermediates, 2015, 41, 9575-9586.	2.7	6
51	Deposition of highly dispersed gold nanoparticles onto metal phosphates by deposition–precipitation with aqueous ammonia. Catalysis Science and Technology, 2021, 11, 7141-7150.	4.1	5
52	Electrophilic C(sp ²)â^'H Silylation by Supported Gold Catalysts. ChemCatChem, 2021, 13, 4705-4713.	3.7	5
53	Reductive Cycloisomerization of Diynes by Supported Palladium Catalysts and Subsequent [4+2] Cycloaddition for Oneâ€Pot Synthesis of Cyclohexenes. ChemCatChem, 2020, 12, 455-458.	3.7	1
54	Gold-catalyzed thioetherification of allyl, benzyl, and propargyl phosphates. Catalysis Science and Technology, 0, , .	4.1	1

#	Article	IF	CITATIONS
55	Front Cover Picture: Silylation of Aryl Chlorides by Bimetallic Catalysis of Palladium and Gold on Alloy Nanoparticles (Adv. Synth. Catal. 13/2020). Advanced Synthesis and Catalysis, 2020, 362, 2551-2551.	4.3	0