Stephen K Burley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3586897/publications.pdf

Version: 2024-02-01

245 papers 29,630 citations

80 h-index 163 g-index

261 all docs

261 docs citations

times ranked

261

30072 citing authors

#	Article	IF	CITATIONS
1	Evolution of the <scp>SARSâ€CoV</scp> â€2 proteome in three dimensions (3D) during the first 6 months of the <scp>COVID</scp> â€19 pandemic. Proteins: Structure, Function and Bioinformatics, 2022, 90, 1054-1080.	2.6	31
2	<scp>RCSB</scp> Protein Data Bank: Celebrating 50 years of the <scp>PDB</scp> with new tools for understanding and visualizing biological macromolecules in <scp>3D</scp> . Protein Science, 2022, 31, 187-208.	7.6	84
3	<scp>PDB</scp> â€101: Educational resources supporting molecular explorations through biology and medicine. Protein Science, 2022, 31, 129-140.	7.6	43
4	RCSB Protein Data Bank resources for structure-facilitated design of mRNA vaccines for existing and emerging viral pathogens. Structure, 2022, 30, 55-68.e2.	3.3	10
5	Simplified quality assessment for small-molecule ligands in the Protein Data Bank. Structure, 2022, 30, 252-262.e4.	3.3	12
6	RCSB Protein Data Bank: improved annotation, search and visualization of membrane protein structures archived in the PDB. Bioinformatics, 2022, 38, 1452-1454.	4.1	41
7	PDBx/mmCIF Ecosystem: Foundational Semantic Tools for Structural Biology. Journal of Molecular Biology, 2022, 434, 167599.	4.2	39
8	mTOR regulates aerobic glycolysis through NEAT1 and nuclear paraspeckle-mediated mechanism in hepatocellular carcinoma. Theranostics, 2022, 12, 3518-3533.	10.0	18
9	Genetic and Structural Analysis of SARS-CoV-2 Spike Protein for Universal Epitope Selection. Molecular Biology and Evolution, 2022, 39, .	8.9	7
10	RCSB Protein Data Bank 1D3D module: displaying positional features on macromolecular assemblies. Bioinformatics, 2022, 38, 3304-3305.	4.1	4
11	Exploring protein symmetry at the RCSB Protein Data Bank. Emerging Topics in Life Sciences, 2022, 6, 231-243.	2.6	7
12	RCSB Protein Data Bank: Architectural Advances Towards Integrated Searching and Efficient Access to Macromolecular Structure Data from the PDB Archive. Journal of Molecular Biology, 2021, 433, 166704.	4.2	106
13	The Protein Data Bank Archive. Methods in Molecular Biology, 2021, 2305, 3-21.	0.9	49
14	Impact of structural biologists and the Protein Data Bank on small-molecule drug discovery and development. Journal of Biological Chemistry, 2021, 296, 100559.	3.4	23
15	Enhanced validation of small-molecule ligands and carbohydrates in the Protein Data Bank. Structure, 2021, 29, 393-400.e1.	3.3	28
16	Modernized uniform representation of carbohydrate molecules in the Protein Data Bank. Glycobiology, 2021, 31, 1204-1218.	2.5	17
17	Mol* Viewer: modern web app for 3D visualization and analysis of large biomolecular structures. Nucleic Acids Research, 2021, 49, W431-W437.	14.5	515
18	Toward improving androgen receptor-targeted therapies in male-dominant hepatocellular carcinoma. Drug Discovery Today, 2021, 26, 1539-1546.	6.4	18

#	Article	IF	CITATIONS
19	Open-access data: A cornerstone for artificial intelligence approaches to protein structure prediction. Structure, 2021, 29, 515-520.	3.3	22
20	Design and proof of concept for targeted phage-based COVID-19 vaccination strategies with a streamlined cold-free supply chain. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	35
21	mTORC1 Promotes ARID1A Degradation and Oncogenic Chromatin Remodeling in Hepatocellular Carcinoma. Cancer Research, 2021, 81, 5652-5665.	0.9	12
22	RCSB Protein Data Bank 1D tools and services. Bioinformatics, 2021, 36, 5526-5527.	4.1	15
23	RCSB Protein Data Bank: powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Research, 2021, 49, D437-D451.	14.5	918
24	John D. Westbrook Jr (1957–2021). Acta Crystallographica Section D: Structural Biology, 2021, 77, 1475-1476.	2.3	1
25	Predicting Proteome-Scale Protein Structure with Artificial Intelligence. New England Journal of Medicine, 2021, 385, 2191-2194.	27.0	17
26	RCSB Protein Data Bank: Enabling biomedical research and drug discovery. Protein Science, 2020, 29, 52-65.	7.6	223
27	RCSB Protein Data Bank tools for 3D structure-guided cancer research: human papillomavirus (HPV) case study. Oncogene, 2020, 39, 6623-6632.	5.9	6
28	Integrative illustration for coronavirus outreach. PLoS Biology, 2020, 18, e3000815.	5.6	18
29	Virtual Boot Camp: <scp>COVID</scp> â€19 evolution and structural biology. Biochemistry and Molecular Biology Education, 2020, 48, 511-513.	1.2	5
30	Insights from 20 years of the Molecule of the Month. Biochemistry and Molecular Biology Education, 2020, 48, 350-355.	1.2	16
31	Real time structural search of the Protein Data Bank. PLoS Computational Biology, 2020, 16, e1007970.	3.2	42
32	Impact of the Protein Data Bank on antineoplastic approvals. Drug Discovery Today, 2020, 25, 837-850.	6.4	24
33	How to help the free market fight coronavirus. Nature, 2020, 580, 167-167.	27.8	11
34	High-performance macromolecular data delivery and visualization for the web. Acta Crystallographica Section D: Structural Biology, 2020, 76, 1167-1173.	2.3	3
35	BinaryCIF and CIFTools—Lightweight, efficient and extensible macromolecular data management. PLoS Computational Biology, 2020, 16, e1008247.	3.2	15
36	Real-time structural motif searching in proteins using an inverted index strategy. PLoS Computational Biology, 2020, 16, e1008502.	3.2	15

3

#	Article	IF	Citations
37	Impact of the Protein Data Bank Across Scientific Disciplines. Data Science Journal, 2020, 19, 25.	1.3	17
38	Real time structural search of the Protein Data Bank. , 2020, 16, e1007970.		0
39	Real time structural search of the Protein Data Bank. , 2020, 16, e1007970.		0
40	Real time structural search of the Protein Data Bank. , 2020, 16, e1007970.		0
41	Real time structural search of the Protein Data Bank. , 2020, 16, e1007970.		0
42	Real-time structural motif searching in proteins using an inverted index strategy., 2020, 16, e1008502.		0
43	Real-time structural motif searching in proteins using an inverted index strategy. , 2020, 16, e1008502.		0
44	Real-time structural motif searching in proteins using an inverted index strategy., 2020, 16, e1008502.		0
45	Real-time structural motif searching in proteins using an inverted index strategy., 2020, 16, e1008502.		0
46	A Novel Acquired Exon 20 EGFR M766Q Mutation in Lung Adenocarcinoma Mediates Osimertinib Resistance but is Sensitive to Neratinib and Poziotinib. Journal of Thoracic Oncology, 2019, 14, 1982-1988.	1.1	27
47	BioJava 5: A community driven open-source bioinformatics library. PLoS Computational Biology, 2019, 15, e1006791.	3.2	44
48	Announcing mandatory submission of PDBx/mmCIF format files for crystallographic depositions to the Protein Data Bank (PDB). Acta Crystallographica Section D: Structural Biology, 2019, 75, 451-454.	2.3	46
49	How Structural Biologists and the Protein Data Bank Contributed to Recent FDA New Drug Approvals. Structure, 2019, 27, 211-217.	3.3	65
50	D3R Grand Challenge 3: blind prediction of protein–ligand poses and affinity rankings. Journal of Computer-Aided Molecular Design, 2019, 33, 1-18.	2.9	104
51	Protein Data Bank: the single global archive for 3D macromolecular structure data. Nucleic Acids Research, 2019, 47, D520-D528.	14.5	671
52	RCSB Protein Data Bank: biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy. Nucleic Acids Research, 2019, 47, D464-D474.	14.5	918
53	Recon3D enables a three-dimensional view of gene variation in human metabolism. Nature Biotechnology, 2018, 36, 272-281.	17.5	520
54	SOD1 Phosphorylation by mTORC1 Couples Nutrient Sensing and Redox Regulation. Molecular Cell, 2018, 70, 502-515.e8.	9.7	94

#	Article	IF	Citations
55	RCSB Protein Data Bank: Sustaining a living digital data resource that enables breakthroughs in scientific research and biomedical education. Protein Science, 2018, 27, 316-330.	7.6	219
56	D3R Grand Challenge 2: blind prediction of protein–ligand poses, affinity rankings, and relative binding free energies. Journal of Computer-Aided Molecular Design, 2018, 32, 1-20.	2.9	156
57	Outlier analyses of the Protein Data Bank archive using a probability-density-ranking approach. Scientific Data, 2018, 5, 180293.	5.3	7
58	Integrative/Hybrid Methods Structural Biology: Role of Macromolecular Crystallography. Advances in Experimental Medicine and Biology, 2018, 1105, 11-18.	1.6	4
59	Amino acid modifications for conformationally constraining naturally occurring and engineered peptide backbones: Insights from the Protein Data Bank. Biopolymers, 2018, 109, e23230.	2.4	6
60	Worldwide Protein Data Bank biocuration supporting open access to high-quality 3D structural biology data. Database: the Journal of Biological Databases and Curation, 2018, 2018, .	3.0	45
61	Investigation of protein quaternary structure via stoichiometry and symmetry ınformation. PLoS ONE, 2018, 13, e0197176.	2.5	12
62	Comparison of $\langle i \rangle$ Alicyclobacillus acidocaldarius $\langle i \rangle \langle i \rangle$ Succinylbenzoate Synthase to Its Promiscuous $\langle i \rangle$ N $\langle i \rangle$ -Succinylamino Acid Racemase $\langle i \rangle$ Succinylbenzoate Synthase Relatives. Biochemistry, 2018, 57, 3676-3689.	2.5	9
63	Analysis of impact metrics for the Protein Data Bank. Scientific Data, 2018, 5, 180212.	5.3	24
64	RCSB Protein Data Bank: Sustaining A Living Digital Data Resource That Enables Breakthroughs In Scientific Research And Biomedical Education. FASEB Journal, 2018, 32, 674.3.	0.5	0
65	OUP accepted manuscript. Nucleic Acids Research, 2017, 45, D271-D281.	14.5	619
66	Multivariate Analyses of Quality Metrics for Crystal Structures in the PDB Archive. Structure, 2017, 25, 458-468.	3.3	28
67	OneDep: Unified wwPDB System for Deposition, Biocuration, and Validation of Macromolecular Structures in the PDB Archive. Structure, 2017, 25, 536-545.	3.3	130
68	Protein Data Bank (PDB): The Single Global Macromolecular Structure Archive. Methods in Molecular Biology, 2017, 1607, 627-641.	0.9	592
69	PDB-Dev: a Prototype System for Depositing Integrative/Hybrid Structural Models. Structure, 2017, 25, 1317-1318.	3.3	84
70	Validation of Structures in the Protein Data Bank. Structure, 2017, 25, 1916-1927.	3.3	210
71	Impact of genetic variation on three dimensional structure and function of proteins. PLoS ONE, 2017, 12, e0171355.	2.5	55
72	<i>DCC</i> : a Swiss army knife for structure factor analysis and validation. Journal of Applied Crystallography, 2016, 49, 1081-1084.	4.5	22

#	Article	IF	Citations
73	Using the Tools and Resources of the RCSB Protein Data Bank. Current Protocols in Bioinformatics, 2016, 55, 1.9.1-1.9.35.	25.8	8
74	D3R grand challenge 2015: Evaluation of protein–ligand pose and affinity predictions. Journal of Computer-Aided Molecular Design, 2016, 30, 651-668.	2.9	178
75	The archiving and dissemination of biological structure data. Current Opinion in Structural Biology, 2016, 40, 17-22.	5.7	28
76	Integrating genomic information with protein sequence and 3D atomic level structure at the RCSB protein data bank. Bioinformatics, 2016, 32, 3833-3835.	4.1	15
77	A public database of macromolecular diffraction experiments. Acta Crystallographica Section D: Structural Biology, 2016, 72, 1181-1193.	2.3	103
78	RCSB Protein Data Bank: A Resource for Chemical, Biochemical, and Structural Explorations of Large and Small Biomolecules. Journal of Chemical Education, 2016, 93, 569-575.	2.3	66
79	Outcome of the First wwPDB Hybrid/Integrative Methods Task Force Workshop. Structure, 2015, 23, 1156-1167.	3.3	159
80	The RCSB PDB "Molecule of the Month― Inspiring a Molecular View of Biology. PLoS Biology, 2015, 13, e1002140.	5.6	88
81	The RCSB Protein Data Bank: views of structural biology for basic and applied research and education. Nucleic Acids Research, 2015, 43, D345-D356.	14.5	461
82	Integrative Structure–Function Mapping of the Nucleoporin Nup133 Suggests a Conserved Mechanism for Membrane Anchoring of the Nuclear Pore Complex. Molecular and Cellular Proteomics, 2014, 13, 2911-2926.	3.8	67
83	Response toOn prompt update of literature references in the Protein Data Bank. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 2780-2780.	2.5	1
84	Crystal structure of Clostridium acetobutylicum aspartate kinase (CaAk): An important allosteric enzyme for amino acids production. Biotechnology Reports (Amsterdam, Netherlands), 2014, 3, 73-85.	4.4	12
85	Loss of quaternary structure is associated with rapid sequence divergence in the OSBS family. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8535-8540.	7.1	29
86	Divergent Evolution of Ligand Binding in theo-Succinylbenzoate Synthase Family. Biochemistry, 2013, 52, 7512-7521.	2.5	14
87	A public-private partnership to unlock the untargeted kinome. Nature Chemical Biology, 2013, 9, 3-6.	8.0	141
88	PDB40: The Protein Data Bank celebrates its 40th birthday. Biopolymers, 2013, 99, 165-169.	2.4	7
89	Structure, Dynamics, Evolution, and Function of a Major Scaffold Component in the Nuclear Pore Complex. Structure, 2013, 21, 560-571.	3.3	53
90	Revealing structural views of biology. Biopolymers, 2013, 99, 817-824.	2.4	4

#	Article	IF	CITATIONS
91	Structure and Catalytic Mechanism of Ligl: Insight into the Amidohydrolase Enzymes of cog3618 and Lignin Degradation. Biochemistry, 2012, 51, 3497-3507.	2.5	32
92	Rapid-access, high-throughput synchrotron crystallography for drug discovery. Trends in Pharmacological Sciences, 2012, 33, 261-267.	8.7	28
93	Cas5d processes pre-crRNA and is a member of a larger family of CRISPR RNA endonucleases. Rna, 2012, 18, 2020-2028.	3.5	80
94	Structural insight into mechanism and diverse substrate selection strategy of <scp>L</scp> â€ibulokinase. Proteins: Structure, Function and Bioinformatics, 2012, 80, 261-268.	2.6	5
95	Atomic structure of the nuclear pore complex targeting domain of a Nup116 homologue from the yeast, <i>Candida glabrata</i> . Proteins: Structure, Function and Bioinformatics, 2012, 80, 2110-2116.	2.6	7
96	Catalytic Mechanism and Three-Dimensional Structure of Adenine Deaminase [,] . Biochemistry, 2011, 50, 1917-1927.	2.5	42
97	Enzymatic Deamination of the Epigenetic Base <i>N</i> -6-Methyladenine. Journal of the American Chemical Society, 2011, 133, 2080-2083.	13.7	24
98	Pa0148 fromPseudomonas aeruginosaCatalyzes the Deamination of Adenine. Biochemistry, 2011, 50, 6589-6597.	2.5	18
99	Gimme Phospho-Serine Five! Capping Enzyme Guanylyltransferase Recognition of the RNA Polymerase II CTD. Molecular Cell, 2011, 43, 163-165.	9.7	7
100	Structural and Functional Studies of Fatty Acyl Adenylate Ligases from E. coli and L. pneumophila. Journal of Molecular Biology, 2011, 406, 313-324.	4.2	29
101	Protein-RNA and Protein-Protein Recognition by Dual KH1/2 Domains of the Neuronal Splicing Factor Nova-1. Structure, 2011, 19, 930-944.	3.3	59
102	Structural basis for a ribofuranosyl binding protein: Insights into the furanose specific transport. Proteins: Structure, Function and Bioinformatics, 2011, 79, 1352-1357.	2.6	4
103	Structure of the Câ€terminal domain of <i>Saccharomyces cerevisiae</i> Nup133, a component of the nuclear pore complex. Proteins: Structure, Function and Bioinformatics, 2011, 79, 1672-1677.	2.6	16
104	The catalase activity of diiron adenine deaminase. Protein Science, 2011, 20, 2080-2094.	7.6	14
105	Structural Variation in Bacterial Glyoxalase I Enzymes. Journal of Biological Chemistry, 2011, 286, 38367-38374.	3.4	42
106	Characterization of metalloproteins by high-throughput X-ray absorption spectroscopy. Genome Research, 2011, 21, 898-907.	5.5	41
107	ModBase, a database of annotated comparative protein structure models, and associated resources. Nucleic Acids Research, 2011, 39, D465-D474.	14.5	506
108	Structural Underpinnings of Nitrogen Regulation by the Prototypical Nitrogen-Responsive Transcriptional Factor NrpR. Structure, 2010, 18, 1512-1521.	3.3	11

#	Article	IF	Citations
109	Mass spectrometry guided in situ proteolysis to obtain crystals for X-ray structure determination. Journal of the American Society for Mass Spectrometry, 2010, 21, 1795-1801.	2.8	13
110	Structural studies on cytosolic domain of magnesium transporter MgtE from <i>Enterococcus faecalis</i> . Proteins: Structure, Function and Bioinformatics, 2010, 78, 487-491.	2.6	8
111	Structures of the autoproteolytic domain from the <i>Saccharomyces cerevisiae</i> nuclear pore complex component, Nup145. Proteins: Structure, Function and Bioinformatics, 2010, 78, 1992-1998.	2.6	13
112	Structure of a putative BenFâ€like porin from <i>Pseudomonas fluorescens</i> Pfâ€5 at 2.6 à resolution. Proteins: Structure, Function and Bioinformatics, 2010, 78, 3056-3062.	2.6	17
113	Structural Bases of PAS Domain-regulated Kinase (PASK) Activation in the Absence of Activation Loop Phosphorylation. Journal of Biological Chemistry, 2010, 285, 41034-41043.	3.4	26
114	Discovery and Structure Determination of the Orphan Enzyme Isoxanthopterin Deaminase,. Biochemistry, 2010, 49, 4374-4382.	2.5	18
115	Functional Identification and Structure Determination of Two Novel Prolidases from cog1228 in the Amidohydrolase Superfamily,. Biochemistry, 2010, 49, 6791-6803.	2.5	18
116	The Hunt for 8-Oxoguanine Deaminase. Journal of the American Chemical Society, 2010, 132, 1762-1763.	13.7	34
117	Structures of PHR Domains from Mus musculus Phr1 (Mycbp2) Explain the Loss-of-Function Mutation (Gly1092 â†' Glu) of the C. elegans Ortholog RPM-1. Journal of Molecular Biology, 2010, 397, 883-892.	4.2	3
118	Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4154-4159.	7.1	576
119	SGX523 is an exquisitely selective, ATP-competitive inhibitor of the MET receptor tyrosine kinase with antitumor activity <i>in vivo</i> . Molecular Cancer Therapeutics, 2009, 8, 3181-3190.	4.1	123
120	Target selection and annotation for the structural genomics of the amidohydrolase and enolase superfamilies. Journal of Structural and Functional Genomics, 2009, 10, 107-125.	1.2	25
121	Blocking UVâ€Induced eIF2α Phosphorylation with Small Molecule Inhibitors of GCN2. Chemical Biology and Drug Design, 2009, 74, 57-67.	3.2	32
122	Functional Annotation of Two New Carboxypeptidases from the Amidohydrolase Superfamily of Enzymes. Biochemistry, 2009, 48, 4567-4576.	2.5	19
123	Crystal structure of a conserved protein of unknown function (MJ1651) from <i>Methanococcus jannaschii</i> . Proteins: Structure, Function and Bioinformatics, 2008, 70, 572-577.	2.6	4
124	Xâ€ray crystal structure of the B component of Hemolysin BL from <i>Bacillus cereus</i> . Proteins: Structure, Function and Bioinformatics, 2008, 71, 534-540.	2.6	73
125	A novel mode of dimerization via formation of a glutamate anhydride crosslink in a protein crystal structure. Proteins: Structure, Function and Bioinformatics, 2008, 71, 1038-1041.	2.6	1
126	Crystal structure of a putative lysostaphin peptidase from <i>Vibrio cholerae</i> . Proteins: Structure, Function and Bioinformatics, 2008, 72, 1096-1103.	2.6	14

#	Article	IF	Citations
127	Protein production and purification. Nature Methods, 2008, 5, 135-146.	19.0	763
128	Contributions to the NIH-NIGMS Protein Structure Initiative from the PSI Production Centers. Structure, 2008, 16, 5-11.	3.3	58
129	High Throughput Protein Production and Crystallization at NYSGXRC. Methods in Molecular Biology, 2008, 426, 561-575.	0.9	33
130	A Common Catalytic Mechanism for Proteins of the Hutl Family. Biochemistry, 2008, 47, 5608-5615.	2.5	10
131	SGX393 inhibits the CML mutant Bcr-Abl ^{T315I} and preempts <i>iin vitro</i> resistance when combined with nilotinib or dasatinib. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5507-5512.	7.1	84
132	Structure of Human Dual Specificity Protein Phosphatase 23, VHZ, Enzyme-Substrate/Product Complex. Journal of Biological Chemistry, 2008, 283, 8946-8953.	3.4	22
133	UPF201 Archaeal Specific Family Members Reveal Structural Similarity to RNA-Binding Proteins but Low Likelihood for RNA-Binding Function. PLoS ONE, 2008, 3, e3903.	2.5	2
134	Structural Analysis of a Ternary Complex of Allantoate Amidohydrolase from Escherichia coli Reveals its Mechanics. Journal of Molecular Biology, 2007, 368, 450-463.	4.2	28
135	X-ray structures of two proteins belonging to Pfam DUF178 revealed unexpected structural similarity to the DUF191 Pfam family. BMC Structural Biology, 2007, 7, 62.	2.3	5
136	Structural genomics of protein phosphatases. Journal of Structural and Functional Genomics, 2007, 8, 121-140.	1.2	148
137	SGX70393 Inhibits Bcr-AblT315I In Vitro and In Vivo and Completely Suppresses Resistance When Combined with Nilotinib or Dasatinib Blood, 2007, 110, 535-535.	1.4	4
138	Structural basis for activation of the therapeutic L-nucleoside analogs 3TC and troxacitabine by human deoxycytidine kinase. Nucleic Acids Research, 2006, 35, 186-192.	14.5	45
139	Structure determination of an FMN reductase fromPseudomonas aeruginosaPA01 using sulfur anomalous signal. Acta Crystallographica Section D: Biological Crystallography, 2006, 62, 383-391.	2.5	41
140	Crystal structures of two putative phosphoheptose isomerases. Proteins: Structure, Function and Bioinformatics, 2006, 63, 1092-1096.	2.6	14
141	Crystal structure of a putative HTH-type transcriptional regulator yxaF from Bacillus subtilis. Proteins: Structure, Function and Bioinformatics, 2006, 63, 1087-1091.	2.6	5
142	Crystal structure of phosphatidylglycerophosphatase (PGPase), a putative membrane-bound lipid phosphatase, reveals a novel binuclear metal binding site and two "proton wires― Proteins: Structure, Function and Bioinformatics, 2006, 64, 851-862.	2.6	10
143	Crystal structure of glycerophosphodiester phosphodiesterase from Agrobacterium tumefaciens by SAD with a large asymmetric unit. Proteins: Structure, Function and Bioinformatics, 2006, 65, 514-518.	2.6	13
144	Crystal structure of trehalose-6-phosphate phosphatase-related protein: Biochemical and biological implications. Protein Science, 2006, 15, 1735-1744.	7.6	54

#	Article	IF	Citations
145	Two Structurally Atypical HEAT Domains in the C-Terminal Portion of Human eIF4G Support Binding to eIF4A and Mnk1. Structure, 2006, 14, 913-923.	3.3	56
146	Outcome of a Workshop on Archiving Structural Models of Biological Macromolecules. Structure, 2006, 14, 1211-1217.	3.3	60
147	Mechanism of action of a flavin-containing monooxygenase. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9832-9837.	7.1	152
148	Inhibition of T315I Bcr-Abl and Other Imatinib-Resistant Bcr-Abl Mutants by the Selective Abl Kinase Inhibitor SGX70393 Blood, 2006, 108, 1373-1373.	1.4	3
149	X-Ray Structure of a Rex-Family Repressor/NADH Complex Insights into the Mechanism of Redox Sensing. Structure, 2005, 13, 43-54.	3.3	78
150	High-throughput Limited Proteolysis/Mass Spectrometry for Protein Domain Elucidation. Journal of Structural and Functional Genomics, 2005, 6, 129-134.	1.2	55
151	New York-Structural GenomiX Research Consortium (NYSGXRC): A Large Scale Center for the Protein Structure Initiative. Journal of Structural and Functional Genomics, 2005, 6, 225-232.	1.2	48
152	Structural Basis for Autoinhibition and Mutational Activation of Eukaryotic Initiation Factor 2α Protein Kinase GCN2*[boxs]. Journal of Biological Chemistry, 2005, 280, 29289-29299.	3.4	100
153	Application of FASTTM Fragment-Based Lead Discovery and Structure-Guided Design to Discovery of Small Molecule Inhibitors of BCR-ABL Tyrosine Kinase Active Against the T315I Imatinib-Resistant Mutant Blood, 2005, 106, 698-698.	1.4	21
154	X-ray Structure of Translation Initiation Factor elF2γ. Journal of Biological Chemistry, 2004, 279, 10634-10642.	3.4	73
155	Structural bases for CRMP function in plexin-dependent semaphorin3A signaling. EMBO Journal, 2004, 23, 9-22.	7.8	130
156	Structure of nucleotide-binding domain 1 of the cystic fibrosis transmembrane conductance regulator. EMBO Journal, 2004, 23, 282-293.	7.8	376
157	A Novel Mode of Gleevec Binding Is Revealed by the Structure of Spleen Tyrosine Kinase. Journal of Biological Chemistry, 2004, 279, 55827-55832.	3.4	179
158	She2p Is a Novel RNA Binding Protein with a Basic Helical Hairpin Motif. Cell, 2004, 119, 491-502.	28.9	66
159	Crystal Structure of Shikimate 5-Dehydrogenase (SDH) Bound to NADP. Structure, 2003, 11, 1005-1013.	3.3	40
160	A Modular Cross-Linking Approach for Exploring Protein Interactions. Journal of the American Chemical Society, 2003, 125, 2416-2425.	13.7	189
161	X-Ray Structures of Myc-Max and Mad-Max Recognizing DNA. Cell, 2003, 112, 193-205.	28.9	474
162	Crystal Structure of the MazE/MazF Complex. Molecular Cell, 2003, 11, 875-884.	9.7	271

#	Article	IF	CITATIONS
163	Phosphorylation of eIF4E attenuates its interaction with mRNA 5' cap analogs by electrostatic repulsion: Intein-mediated protein ligation strategy to obtain phosphorylated protein. Rna, 2003, 9, 52-61.	3.5	124
164	Molecular mechanism of recruitment of TFIIF- associating RNA polymerase C-terminal domain phosphatase (FCP1) by transcription factor IIF. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2296-2299.	7.1	46
165	The Kinetic Mechanism of Phosphomevalonate Kinase. Journal of Biological Chemistry, 2003, 278, 4510-4515.	3.4	45
166	The cholesterol-regulated StarD4 gene encodes a StAR-related lipid transfer protein with two closely related homologues, StarD5 and StarD6. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 6943-6948.	7.1	169
167	STRUCTURING THEUNIVERSE OFPROTEINS. Annual Review of Genomics and Human Genetics, 2002, 3, 243-262.	6.2	62
168	Investigation of the Roles of Catalytic Residues in Serotonin N-Acetyltransferase. Journal of Biological Chemistry, 2002, 277, 18118-18126.	3. 4	59
169	Crystal structure of the <i>Mus musculus</i> cholesterol-regulated START protein 4 (StarD4) containing a StAR-related lipid transfer domain. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 6949-6954.	7.1	158
170	X-ray crystallographic studies of serotonin N-acetyltransferase catalysis and inhibition. Journal of Molecular Biology, 2002, 317, 215-224.	4.2	54
171	Recognition of the Rotavirus mRNA 3′ Consensus by an Asymmetric NSP3 Homodimer. Cell, 2002, 108, 71-81.	28.9	96
172	Uncoupling of Initiation Factor eIF5B/IF2 GTPase and Translational Activities by Mutations that Lower Ribosome Affinity. Cell, 2002, 111, 1015-1025.	28.9	123
173	Biophysical Studies of eIF4E Cap-binding Protein: Recognition of mRNA 5′ Cap Structure and Synthetic Fragments of eIF4G and 4E-BP1 Proteins. Journal of Molecular Biology, 2002, 319, 615-635.	4.2	353
174	Recognition of eIF4G by Rotavirus NSP3 Reveals a Basis for mRNA Circularization. Molecular Cell, 2002, 9, 1273-1283.	9.7	121
175	Structural biology of e1F4F: mRNA recognition and preparation in eukaryotic translation initiation. Advances in Protein Chemistry, 2002, 61 , $269-297$.	4.4	4
176	Cocrystal Structures of Diaminopimelate Decarboxylase. Structure, 2002, 10, 1499-1508.	3.3	57
177	Transcription factor complexes. Current Opinion in Structural Biology, 2002, 12, 225-230.	5 . 7	33
178	Structural genomics of proteins from conserved biochemical pathways and processes. Current Opinion in Structural Biology, 2002, 12, 383-391.	5 . 7	38
179	Crystal structure of the Escherichia coli shikimate kinase I (AroK) that confers sensitivity to mecillinam. Proteins: Structure, Function and Bioinformatics, 2002, 47, 558-562.	2.6	31
180	Crystal structure of the Escherichia coli SbmC protein that protects cells from the DNA replication inhibitor microcin B17. Proteins: Structure, Function and Bioinformatics, 2002, 47, 403-407.	2.6	24

#	Article	IF	CITATIONS
181	Crystal structure of the Streptococcus pneumoniae phosphomevalonate kinase, a member of the GHMP kinase superfamily. Proteins: Structure, Function and Bioinformatics, 2002, 47, 568-571.	2.6	53
182	Crystal structure of the Escherichia coli glucose-inhibited division protein B (GidB) reveals a methyltransferase fold. Proteins: Structure, Function and Bioinformatics, 2002, 47, 563-567.	2.6	28
183	X-ray structure of Saccharomyces cerevisiae homologous mitochondrial matrix factor 1 (Hmf1). Proteins: Structure, Function and Bioinformatics, 2002, 48, 431-436.	2.6	22
184	X-ray structure of an M. jannaschii DNA-binding protein: Implications for antibiotic resistance in S. aureus. Proteins: Structure, Function and Bioinformatics, 2002, 50, 170-173.	2.6	23
185	Structural genomics: A pipeline for providing structures for the biologist. Protein Science, 2002, 11, 723-738.	7.6	168
186	Crystal structure of the Streptococcus pneumoniae phosphomevalonate kinase, a member of the GHMP kinase superfamily. Proteins: Structure, Function and Bioinformatics, 2002, 47, 568-571.	2.6	2
187	Crystal structure of the Escherichia coli glucoseâ€inhibited division protein B (GidB) reveals a methyltransferase fold. Proteins: Structure, Function and Bioinformatics, 2002, 47, 563-567.	2.6	1
188	A standard reference frame for the description of nucleic acid base-pair geometry 1 1Edited by P. E. Wright 2 2This is a document of the Nomenclature Committee of IUBMB (NC-IUBMB)/IUPAC-IUBMB Joint Commission on Biochemical Nomenclature (JCBN), whose members are R. Cammack (chairman), A. Bairoch, H.M. Berman, S. Boyce, C.R. Cantor, K. Elliott, D. Horton, M. Kanehisa, A. Kotyk, G.P. Moss, N.	4.2	533
189	Sharon and K.F. Tipton Journal of Molecular Biology, 2001, 313, 229-237. A Conserved HEAT Domain within eIF4G Directs Assembly of the Translation Initiation Machinery. Molecular Cell, 2001, 7, 193-203.	9.7	199
190	Translational Repression by a Novel Partner of Human Poly(A) Binding Protein, Paip2. Molecular Cell, 2001, 7, 205-216.	9.7	197
191	Crystal Structure of Negative Cofactor 2 Recognizing the TBP-DNA Transcription Complex. Cell, 2001, 106, 71-81.	28.9	134
192	A Novel Peptide Recognition Mode Revealed by the X-Ray Structure of a Core U2AF35/U2AF65 Heterodimer. Cell, 2001, 106, 595-605.	28.9	192
193	Thermodynamic analysis of the interaction between YY1 and the AAV P5 promoter initiator element. Chemistry and Biology, 2001, 8, 179-187.	6.0	18
194	Response to Paoli. Nature Structural Biology, 2001, 8, 745-745.	9.7	3
195	Engaging the ribosome: universal IFs of translation. Trends in Biochemical Sciences, 2001, 26, 705-709.	7.5	71
196	Hierarchical phosphorylation of the translation inhibitor 4E-BP1. Genes and Development, 2001, 15, 2852-2864.	5.9	703
197	An overview of structural genomics. , 2000, 7, 932-934.		197
198	Crystal structures of ribosome anti-association factor IF6. Nature Structural Biology, 2000, 7, 1156-1164.	9.7	70

#	Article	IF	Citations
199	Structure of the winged-helix protein hRFX1 reveals a new mode of DNA binding. Nature, 2000, 403, 916-921.	27.8	296
200	Recognizing DNA in the library. Nature, 2000, 404, 715-717.	27.8	48
201	Winged helix proteins. Current Opinion in Structural Biology, 2000, 10, 110-116.	5.7	497
202	Physical and Functional Interaction between the Eukaryotic Orthologs of Prokaryotic Translation Initiation Factors IF1 and IF2. Molecular and Cellular Biology, 2000, 20, 7183-7191.	2.3	84
203	HDEA, a periplasmic protein that supports acid resistance in pathogenic enteric bacteria 1 1Edited by P. E. Wright. Journal of Molecular Biology, 2000, 295, 605-612.	4.2	201
204	X-Ray Structures of the Universal Translation Initiation Factor IF2/eIF5B. Cell, 2000, 103, 781-792.	28.9	227
205	Sequence-Specific RNA Binding by a Nova KH Domain. Cell, 2000, 100, 323-332.	28.9	307
206	Structural genomics: beyond the Human Genome Project. Nature Genetics, 1999, 23, 151-157.	21.4	369
207	Crystal structures of Nova-1 and Nova-2 K-homology RNA-binding domains. Structure, 1999, 7, 191-203.	3.3	103
208	Cap-Dependent Translation Initiation in Eukaryotes Is Regulated by a Molecular Mimic of eIF4G. Molecular Cell, 1999, 3, 707-716.	9.7	457
209	Recognition of Polyadenylate RNA by the Poly(A)-Binding Protein. Cell, 1999, 98, 835-845.	28.9	465
210	RNA chiropractics. Nature Structural Biology, 1998, 5, 172-174.	9.7	3
211	Co-crystal structure of sterol regulatory element binding protein 1a at 2.3 ť resolution. Structure, 1998, 6, 661-672.	3.3	122
212	Crystal Structure of a GCN5-Related N-acetyltransferase. Cell, 1998, 94, 439-449.	28.9	233
213	TATA Box Mimicry by TFIID. Cell, 1998, 94, 551-553.	28.9	36
214	Structureâ^Function Studies on Positions 17, 18, and 21 Replacement Analogues of Glucagon: The Importance of Charged Residues and Salt Bridges in Glucagon Biological Activityâ€. Journal of Medicinal Chemistry, 1998, 41, 2693-2700.	6.4	22
215	Cloning and Characterization of 4EHP, a Novel Mammalian elF4E-related Cap-binding Protein. Journal of Biological Chemistry, 1998, 273, 13104-13109.	3.4	122
216	[10] Dynamic light scattering in evaluating crystallizability of macromolecules. Methods in Enzymology, 1997, 276, 157-166.	1.0	80

#	Article	IF	Citations
217	Histone-like transcription factors in eukaryotes. Current Opinion in Structural Biology, 1997, 7, 94-102.	5.7	49
218	Cocrystal Structure of the Messenger RNA 5′ Cap-Binding Protein (eIF4E) Bound to 7-methyl-GDP. Cell, 1997, 89, 951-961.	28.9	635
219	Architectural Transcription Factors: Proteins That-Remodel DNA. Cell, 1997, 88, 733-736.	28.9	126
220	The TATA box binding protein. Current Opinion in Structural Biology, 1996, 6, 69-75.	5 . 7	86
221	Structural similarity between TAFs and the heterotetrameric core of the histone octamer. Nature, 1996, 380, 316-322.	27.8	251
222	A histone octamer-like structure within TFIID. Nature, 1996, 380, 356-359.	27.8	184
223	Picking up the TAB. Nature, 1996, 381, 112-113.	27.8	14
224	PCD/DCoH: more than a second molecular saddle. Structure, 1995, 3, 531-534.	3. 3	10
225	Probing the solution structure of the DNAâ€binding protein Max by a combination of proteolysis and mass spectrometry. Protein Science, 1995, 4, 1088-1099.	7.6	149
226	Crystal structure of a TFIIB–TBP–TATA-element ternary complex. Nature, 1995, 377, 119-128.	27.8	543
227	Rel revealed: cocrystal structures of the NF-κB p50 homodimer. Chemistry and Biology, 1995, 2, 77-81.	6.0	1
228	Anti-cooperative Biphasic Equilibrium Binding of Transcription Factor Upstream Stimulatory Factor to Its Cognate DNA Monitored by Protein Fluorescence Changes. Journal of Biological Chemistry, 1995, 270, 19325-19329.	3.4	21
229	Total Chemical Synthesis of a Unique Transcription Factor-Related Protein: cMyc-Max. Journal of the American Chemical Society, 1995, 117, 2998-3007.	13.7	193
230	Molecular basis of mouse microphthalmia (mi) mutations helps explain their developmental and phenotypic consequences. Nature Genetics, 1994, 8, 256-263.	21.4	505
231	Forward to the Fundamentals. Nature Structural and Molecular Biology, 1994, 1, 8-10.	8.2	2
232	Plus ça change, plus c'est la même chose. Nature Structural and Molecular Biology, 1994, 1, 207-208.	8.2	8
233	2.1 $\tilde{\text{A}}$ resolution refined structure of a TATA box-binding protein (TBP). Nature Structural and Molecular Biology, 1994, 1, 621-637.	8.2	108
234	$1.9~\tilde{\text{A}}$ resolution refined structure of TBP recognizing the minor groove of TATAAAAG. Nature Structural and Molecular Biology, 1994, 1, 638-653.	8.2	212

STEPHEN K BURLEY

#	Article	IF	CITATIONS
235	Use of dynamic light scattering to assess crystallizability of macromolecules and macromolecular assemblies. Structure, 1994, 2, 357-359.	3.3	131
236	p53: a cellular Achilles' heel revealed. Structure, 1994, 2, 789-792.	3.3	1
237	DNA-binding motifs from eukaryotic transcription factors. Current Opinion in Structural Biology, 1994, 4, 3-11.	5.7	38
238	Recognition by Max of its cognate DNA through a dimeric b/HLH/Z domain. Nature, 1993, 363, 38-45.	27.8	727
239	Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5. Nature, 1993, 364, 412-420.	27.8	1,253
240	Co-crystal structure of TBP recognizing the minor groove of a TATA element. Nature, 1993, 365, 520-527.	27.8	1,083
241	Re-refinement of the X-ray Crystal Structure of Bovine Lens Leucine Aminopeptidase Complexed with Bestatin. Journal of Molecular Biology, 1993, 230, 722-724.	4.2	39
242	Structure determination and refinement of bovine lens leucine aminopeptidase and its complex with bestatin. Journal of Molecular Biology, 1992, 224, 113-140.	4.2	215
243	DNA recognition, warts and all. Nature, 1992, 359, 476-476.	27.8	2
244	Crystal structure of TFIID TATA-box binding protein. Nature, 1992, 360, 40-46.	27.8	430
245	Exploration of disorder in protein structures by X-ray restrained molecular dynamics. Proteins: Structure, Function and Bioinformatics, 1991, 10, 340-358.	2.6	105