Hugh Pritchard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3586737/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global DNA methylation and cellular 5-methylcytosine and H4 acetylated patterns in primary and secondary dormant seeds of Capsella bursa-pastoris (L.) Medik. (shepherd's purse). Protoplasma, 2022, 259, 595-614.	2.1	6
2	Seeds as natural capital. Trends in Plant Science, 2022, 27, 139-146.	8.8	9
3	Seed viability and fatty acid profiles of five orchid species before and after ageing. Plant Biology, 2022, 24, 168-175.	3.8	10
4	Physiological seed dormancy of Ruschia imbricata and Ruschia uitenhagensis (Aizoaceae) is broken by dry heat and unaffected by seasonality. South African Journal of Botany, 2022, 147, 457-466.	2.5	1
5	Regeneration in recalcitrant-seeded species and risks from climate change. , 2022, , 259-273.		8
6	Climate change and plant regeneration from seeds in Mediterranean regions of the Northern Hemisphere. , 2022, , 101-114.		2
7	Lipid Remodeling Confers Osmotic Stress Tolerance to Embryogenic Cells during Cryopreservation. International Journal of Molecular Sciences, 2021, 22, 2174.	4.1	8
8	Gaseous environment modulates volatile emission and viability loss during seed artificial ageing. Planta, 2021, 253, 106.	3.2	7
9	Comparative analyses of extreme dry seed thermotolerance in five Cactaceae species. Environmental and Experimental Botany, 2021, 188, 104514.	4.2	4
10	Seed longevity and cryobiotechnology in the orchid genus cattleya Cryo-Letters, 2021, 42, 353-365.	0.3	0
11	Assessing seed desiccation responses of native trees in the Caribbean. New Forests, 2020, 51, 705-721.	1.7	12
12	Rainfall, not soil temperature, will limit the seed germination of dry forest species with climate change. Oecologia, 2020, 192, 529-541.	2.0	48
13	Lack of adequate seed supply is a major bottleneck for effective ecosystem restoration in Chile: friendly amendment to Bannister et al. (2018). Restoration Ecology, 2020, 28, 277-281.	2.9	33
14	Unlocking plant resources to support food security and promote sustainable agriculture. Plants People Planet, 2020, 2, 421-445.	3.3	130
15	Cryobiotechnologies: Tools for expanding long-term ex situ conservation to all plant species. Biological Conservation, 2020, 250, 108736.	4.1	62
16	Differential Interpretation of Mountain Temperatures by Endospermic Seeds of Three Endemic Species Impacts the Timing of In Situ Germination. Plants, 2020, 9, 1382.	3.5	7
17	Seed Survival at Low Temperatures: A Potential Selecting Factor Influencing Community Level Changes in High Altitudes under Climate Change. Critical Reviews in Plant Sciences, 2020, 39, 479-492. 	5.7	8
18	Comparative in vitro seed germination and seedling development in tropical and temperate epiphytic and temperate terrestrial orchids. Plant Cell, Tissue and Organ Culture, 2020, 143, 619-633.	2.3	17

#	Article	IF	CITATIONS
19	Dry architecture: towards the understanding of the variation of longevity in desiccation-tolerant germplasm. Seed Science Research, 2020, 30, 142-155.	1.7	64
20	The Cryobiotechnology of Oaks: An Integration of Approaches for the Long-Term Ex Situ Conservation of Quercus Species. Forests, 2020, 11, 1281.	2.1	11
21	Storage of orchid pollinia with varying lipid thermal fingerprints. Protoplasma, 2020, 257, 1401-1413.	2.1	1
22	On the origin of giant seeds: the macroevolution of the double coconut (<i>Lodoicea maldivica</i>) and its relatives (Borasseae, Arecaceae). New Phytologist, 2020, 228, 1134-1148.	7.3	15
23	Pseudophoenix ekmanii (Arecaceae) seeds at suboptimal temperature show reduced imbibition rates and enhanced expression of genes related to germination inhibition. Plant Biology, 2020, 22, 1041-1051.	3.8	4
24	Comparative Seed Morphology of Tropical and Temperate Orchid Species with Different Growth Habits. Plants, 2020, 9, 161.	3.5	13
25	Seed ecology of the geophyte Conopodium majus (Apiaceae), indicator species of ancient woodland understories and oligotrophic meadows. Plant Biology, 2019, 21, 487-497.	3.8	10
26	Lipid Thermal Fingerprints of Long-term Stored Seeds of Brassicaceae. Plants, 2019, 8, 414.	3.5	20
27	Enhancing Food Security through Seed Banking and Use of Wild Plants: Case Studies from the Royal Botanic Gardens, Kew. , 2019, , 32-38.		2
28	Seed life span and food security. New Phytologist, 2019, 224, 557-562.	7.3	64
29	Wheat seed ageing viewed through the cellular redox environment and changes in pH. Free Radical Research, 2019, 53, 641-654.	3.3	23
30	Maximising the use of native seeds in restoration projects. Plant Biology, 2019, 21, 377-379.	3.8	23
31	Seeds of future past: climate change and the thermal memory of plant reproductive traits. Biological Reviews, 2019, 94, 439-456.	10.4	74
32	Longevity of Preserved Germplasm: The Temperature Dependency of Aging Reactions in Glassy Matrices of Dried Fern Spores. Plant and Cell Physiology, 2019, 60, 376-392.	3.1	26
33	Comparison of seed and seedling functional traits in native <i>Helianthus</i> species and the crop <i>H.Âannuus</i> (sunflower). Plant Biology, 2019, 21, 533-543.	3.8	11
34	The seed germination niche limits the distribution of some plant species in calcareous or siliceous alpine bedrocks. Alpine Botany, 2018, 128, 83-95.	2.4	30
35	Native Seed Supply and the Restoration Species Pool. Conservation Letters, 2018, 11, e12381.	5.7	74
36	Integration of genetic and seed fitness data to the conservation of isolated subpopulations of the Mediterranean plant <i>Malcolmia littorea</i> . Plant Biology, 2018, 20, 203-213.	3.8	5

#	Article	IF	CITATIONS
37	Cryobiotechnological approaches for the preservation of oak (Quercus Sp) embryonic axes Cryobiology, 2018, 85, 140.	0.7	1
38	The rise of plant cryobiotechnology and demise of plant cryopreservation?. Cryobiology, 2018, 85, 160-161.	0.7	13
39	Comparative Biology of Cycad Pollen, Seed and Tissue - A Plant Conservation Perspective. Botanical Review, The, 2018, 84, 295-314.	3.9	7
40	Dry heat exposure increases hydrogen peroxide levels and breaks physiological seed coat-imposed dormancy in Mesembryanthemum crystallinum (Aizoaceae) seeds. Environmental and Experimental Botany, 2018, 155, 272-280.	4.2	13
41	Orchid Seed and Pollen: A Toolkit for Long-Term Storage, Viability Assessment and Conservation. Springer Protocols, 2018, , 71-98.	0.3	4
42	Alternating temperature combined with darkness resets base temperature for germination (<i>T</i> _b) in photoblastic seeds of <i>Lippia</i> and <i>Aloysia</i> (Verbenaceae). Plant Biology, 2017, 19, 41-45.	3.8	24
43	Changes in the mitochondrial protein profile due to ROS eruption during ageing of elm (Ulmus pumila) Tj ETQq1	1 0.7843	14 rgBT /Ove
44	Modulating role of ROS in re-establishing desiccation tolerance in germinating seeds of Caragana korshinskii Kom Journal of Experimental Botany, 2017, 68, 3585-3601.	4.8	19
45	Ecological longevity of <i>Polaskia chende</i> (Cactaceae) seeds in the soil seed bank, seedling emergence and survival. Plant Biology, 2017, 19, 973-982.	3.8	13
46	Dissecting seed dormancy and germination in <i>Aquilegia barbaricina</i> , through thermal kinetics of embryo growth. Plant Biology, 2017, 19, 983-993.	3.8	18
47	Thermal buffering capacity of the germination phenotype across the environmental envelope of the Cactaceae. Global Change Biology, 2017, 23, 5309-5317.	9.5	44
48	Development of a reliable GC-MS method for fatty acid profiling using direct transesterification of minimal quantities of microscopic orchid seeds. Seed Science Research, 2016, 26, 84-91.	1.7	7
49	Dry seeds and environmental extremes: consequences for seed lifespan and germination. Functional Plant Biology, 2016, 43, 656.	2.1	13
50	Plant species with extremely small populations (PSESP) in China: AÂseed and spore biology perspective. Plant Diversity, 2016, 38, 209-220.	3.7	42
51	Reactive oxygen species induced by cold stratification promote germination of Hedysarum scoparium seeds. Plant Physiology and Biochemistry, 2016, 109, 406-415.	5.8	50
52	Sequential temperature control of multi-phasic dormancy release and germination of <i>Paeonia corsica</i> seeds. Journal of Plant Ecology, 2016, 9, 464-473.	2.3	19
53	Frozen beauty: The cryobiotechnology of orchid diversity. Biotechnology Advances, 2016, 34, 380-403.	11.7	67
54	Priority Science for the Preservation of Priority Crops. Indian Journal of Plant Genetic Resources, 2016, 29, 292.	0.1	5

#	Article	IF	CITATIONS
55	Habitat-linked temperature requirements for fruit germination in Quercus species: A comparative study of Quercus subgenus Cyclobalanopsis (Asian evergreen oaks) and Quercus subgenus Quercus. South African Journal of Botany, 2015, 100, 108-113.	2.5	16
56	Soil thermal buffer and regeneration niche may favour calcareous fen resilience to climate change. Folia Geobotanica, 2015, 50, 293-301.	0.9	32
57	Cardinal temperatures and thermal time in Polaskia Backeb (Cactaceae) species: Effect of projected soil temperature increase and nurse interaction on germination timing. Journal of Arid Environments, 2015, 115, 73-80.	2.4	25
58	Simulating the germination response to diurnally alternating temperatures under climate change scenarios: comparative studies on Carex diandra seeds. Annals of Botany, 2015, 115, 201-209.	2.9	38
59	Reactive oxygen speciesâ€provoked mitochondriaâ€dependent cell death during ageing of elm (<i>Ulmus) Tj E</i>	TQq1 1 0.7	'84314 rgBT
60	Aspects of Orchid Conservation: Seed and Pollen Storage and their Value in Re-introduction Projects. Universal Journal of Plant Science, 2015, 3, 72-76.	0.3	6
61	Orchid seed stores for sustainable use: a model for future seed-banking activities. Lankesteriana, 2015, 11, .	0.2	10
62	Dependency of seed dormancy types on embryo traits and environmental conditions in <i><scp>R</scp>ibes</i> species. Plant Biology, 2014, 16, 740-747.	3.8	11
63	Innovative approaches to the preservation of forest trees. Forest Ecology and Management, 2014, 333, 88-98.	3.2	80
64	The fluxes of H2O2 and O2 can be used to evaluate seed germination and vigor of Caragana korshinskii. Planta, 2014, 239, 1363-1373.	3.2	15
65	Desiccation tolerance, longevity and seed-siring ability of entomophilous pollen from UK native orchid species. Annals of Botany, 2014, 114, 561-569.	2.9	21
66	Biophysical Characteristics of Successful Oilseed Embryo Cryoprotection and Cryopreservation Using Vacuum Infiltration Vitrification: An Innovation in Plant Cell Preservation. PLoS ONE, 2014, 9, e96169.	2.5	34
67	Thermal niche for in situ seed germination by Mediterranean mountain streams: model prediction and validation for Rhamnus persicifolia seeds. Annals of Botany, 2013, 112, 1887-1897.	2.9	42
68	Evidence for the absence of enzymatic reactions in the glassy state. A case study of xanthophyll cycle pigments in the desiccation-tolerant moss Syntrichia ruralis. Journal of Experimental Botany, 2013, 64, 3033-3043.	4.8	86
69	Interchangeable effects of gibberellic acid and temperature on embryo growth, seed germination and epicotyl emergence in <i>Ribes multiflorum</i> ssp. <i>sandalioticum</i> (Grossulariaceae). Plant Biology, 2012, 14, 77-87.	3.8	31
70	Volatile fingerprints of seeds of four species indicate the involvement of alcoholic fermentation, lipid peroxidation, and Maillard reactions in seed deterioration during ageing and desiccation stress. Journal of Experimental Botany, 2012, 63, 6519-6530.	4.8	63
71	Thermal thresholds as predictors of seed dormancy release and germination timing: altitude-related risks from climate warming for the wild grapevine Vitis vinifera subsp. sylvestris. Annals of Botany, 2012, 110, 1651-1660.	2.9	68
72	Post desiccation germination of mature seeds of tea (Camellia sinensis L.) can be enhanced by pro-oxidant treatment, but partial desiccation tolerance does not ensure survival at â^20°C. Plant Science, 2012, 184, 36-44.	3.6	11

#	Article	IF	CITATIONS
73	Spatial and temporal nature of reactive oxygen species production and programmed cell death in elm (<i>Ulmus pumila L.</i>) seeds during controlled deterioration. Plant, Cell and Environment, 2012, 35, 2045-2059.	5.7	71
74	Rates of Water Loss and Uptake in Recalcitrant Fruits of Quercus Species Are Determined by Pericarp Anatomy. PLoS ONE, 2012, 7, e47368.	2.5	35
75	Long-term, large scale banking of citrus species embryos: comparisons between cryopreservation and other seed banking temperatures. Cryo-Letters, 2012, 33, 453-64.	0.3	5
76	Mathematically combined half-cell reduction potentials of low-molecular-weight thiols as markers of seed ageing. Free Radical Research, 2011, 45, 1093-1102.	3.3	37
77	Inter-nucleosomal DNA fragmentation and loss of RNA integrity during seed ageing. Plant Growth Regulation, 2011, 63, 63-72.	3.4	72
78	Ex Situ Conservation of Orchids in a Warming World. Botanical Review, The, 2010, 76, 193-203.	3.9	88
79	Noninvasive diagnosis of seed viability using infrared thermography. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3912-3917.	7.1	65
80	Influence of freezable/non-freezable water and sucrose on the viability of Theobroma cacao somatic embryos following desiccation and freezing. Plant Cell Reports, 2009, 28, 883-889.	5.6	19
81	The science and economics of ex situ plant conservation. Trends in Plant Science, 2009, 14, 614-621.	8.8	371
82	Thermal analysis and cryopreservation of seeds of Australian wild Citrus species (rutaceae): Citrus australasica, C. inodora and C. garrawayi. Cryo-Letters, 2009, 30, 268-79.	0.3	16
83	Quantification of seed oil from species with varying oil content using supercritical fluid extraction. Phytochemical Analysis, 2008, 19, 493-498.	2.4	22
84	An oxidative burst of superoxide in embryonic axes of recalcitrant sweet chestnut seeds as induced by excision and desiccation. Physiologia Plantarum, 2008, 133, 131-139.	5.2	73
85	Glutathione half-cell reduction potential: A universal stress marker and modulator of programmed cell death?. Free Radical Biology and Medicine, 2006, 40, 2155-2165.	2.9	281
86	Prediction of Desiccation Sensitivity in Seeds of Woody Species: A Probabilistic Model Based on Two Seed Traits and 104 Species. Annals of Botany, 2006, 97, 667-674.	2.9	124
87	Conservation Biology for Seven Palm Species from Diverse Genera. Aliso, 2006, 22, 278-284.	0.2	4
88	Traits of recalcitrant seeds in a semi-deciduous tropical forest in Panama: some ecological implications. Functional Ecology, 2005, 19, 874-885.	3.6	136
89	Ecological correlates of seed desiccation tolerance in tropical African dryland trees. American Journal of Botany, 2004, 91, 863-870.	1.7	122
90	Developmental heat sum influences recalcitrant seed traits in Aesculus hippocastanum across Europe. New Phytologist, 2004, 162, 157-166.	7.3	118

#	Article	IF	CITATIONS
91	Germination of Aesculus hippocastanum seeds following coldâ€induced dormancy loss can be described in relation to a temperatureâ€dependent reduction in base temperature (T b) and thermal time. New Phytologist, 2004, 161, 415-425.	7.3	55
92	Systematic and evolutionary aspects of desiccation tolerance in seeds , 2002, , 239-259.		92
93	Cryopreservation of Seeds. , 1995, 38, 133-144.		24
94	Water Potential and Embryonic Axis Viability in Recalcitrant Seeds of Quercus rubra. Annals of Botany, 1991, 67, 43-49.	2.9	112
95	Quantal Response of Fruit and Seed Germination Rate inQuercus roburL. andCastanea sativaMill, to Constant Temperatures and Photon Dose. Journal of Experimental Botany, 1990, 41, 1549-1557.	4.8	51
96	Changes in Trifolium arvense Seed Quality Following Alternating Temperature Treatment using Liquid Nitrogen. Annals of Botany, 1988, 62, 1-11.	2.9	35
97	Effects of Desiccation and Cryopreservation on theIn VitroViability of Embryos of the Recalcitrant Seed SpeciesAraucaria hunsteiniiK. Schum. Journal of Experimental Botany, 1986, 37, 1388-1397.	4.8	55