
Laura Segatori

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/358656/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Platform Technology for Monitoring the Unfolded Protein Response. Methods in Molecular Biology, 2022, 2378, 45-67.	0.9	1
2	A platform for post-translational spatiotemporal control of cellular proteins. Synthetic Biology, 2021, 6, ysab002.	2.2	3
3	Open questions: how do engineered nanomaterials affect our cells?. BMC Biology, 2020, 18, 176.	3.8	0
4	A gene signal amplifier platform for monitoring the unfolded protein response. Nature Chemical Biology, 2020, 16, 520-528.	8.0	8
5	The importance and future of biochemical engineering. Biotechnology and Bioengineering, 2020, 117, 2305-2318.	3.3	13
6	Hysteretic Genetic Circuit for Detection of Proteasomal Degradation in Mammalian Cells. ACS Synthetic Biology, 2019, 8, 2025-2035.	3.8	3
7	Aggregation Behavior of Nanoparticle-Peptide Systems Affects Autophagy. Bioconjugate Chemistry, 2019, 30, 1986-1997.	3.6	13
8	Input-dependent post-translational control of the reporter output enhances dynamic resolution of mammalian signaling systems. Methods in Enzymology, 2019, 622, 1-27.	1.0	6
9	Overcoming component limitations in synthetic biology through transposon-mediated protein engineering. Methods in Enzymology, 2019, 621, 191-212.	1.0	7
10	Zinc Oxide Particles Induce Activation of the Lysosome–Autophagy System. ACS Omega, 2019, 4, 573-581.	3.5	9
11	A Naturally Encoded Dipeptide Handle for Bioorthogonal Chan–Lam Coupling. Angewandte Chemie, 2018, 130, 4079-4083.	2.0	10
12	A Naturally Encoded Dipeptide Handle for Bioorthogonal Chan–Lam Coupling. Angewandte Chemie - International Edition, 2018, 57, 4015-4019.	13.8	32
13	Quantitatively Predictable Control of Cellular Protein Levels through Proteasomal Degradation. ACS Synthetic Biology, 2018, 7, 540-552.	3.8	19
14	A yeast selection system for the detection of proteasomal activation. Protein Engineering, Design and Selection, 2018, 31, 437-445.	2.1	0
15	CLN8 is an endoplasmic reticulum cargo receptor that regulates lysosome biogenesis. Nature Cell Biology, 2018, 20, 1370-1377.	10.3	80
16	A Split Transcriptional Repressor That Links Protein Solubility to an Orthogonal Genetic Circuit. ACS Synthetic Biology, 2018, 7, 2126-2138.	3.8	21
17	Autophagic response to cellular exposure to titanium dioxide nanoparticles. Acta Biomaterialia, 2018, 79, 354-363.	8.3	32
18	TFEB-mediated activation of the lysosome-autophagy system affects the transduction efficiency of adeno-associated virus 2. Virology, 2017, 510, 1-8.	2.4	6

LAURA SEGATORI

#	Article	IF	CITATIONS
19	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
20	The autophagic response to polystyrene nanoparticles is mediated by transcription factor EB and depends on surface charge. Journal of Nanobiotechnology, 2015, 13, 87.	9.1	48
21	Genetic and Chemical Activation of TFEB Mediates Clearance of Aggregated α-Synuclein. PLoS ONE, 2015, 10, e0120819.	2.5	116
22	Differential autophagic responses to nano-sized materials. Current Opinion in Biotechnology, 2015, 36, 129-136.	6.6	39
23	Sensitive detection of proteasomal activation using the Deg-On mammalian synthetic gene circuit. Nature Communications, 2014, 5, 3612.	12.8	24
24	Impairment of homeostasis in lysosomal storage disorders. IUBMB Life, 2014, 66, 472-477.	3.4	21
25	2-Hydroxypropyl-β-cyclodextrin Promotes Transcription Factor EB-mediated Activation of Autophagy. Journal of Biological Chemistry, 2014, 289, 10211-10222.	3.4	92
26	Lipid Bilayer Phase Transformations Detected Using Microcantilevers. Journal of Physical Chemistry B, 2014, 118, 171-178.	2.6	5
27	Probing the association of triblock copolymers with supported lipid membranes using microcantilevers. Soft Matter, 2014, 10, 6417-6424.	2.7	20
28	Ceria Nanoparticles Stabilized by Organic Surface Coatings Activate the Lysosome-Autophagy System and Enhance Autophagic Clearance. ACS Nano, 2014, 8, 10328-10342.	14.6	103
29	Rapid Detection of Pathogenic Bacteria and Screening of Phage-Derived Peptides Using Microcantilevers. Analytical Chemistry, 2014, 86, 1671-1678.	6.5	56
30	TFEB regulates lysosomal proteostasis. Human Molecular Genetics, 2013, 22, 1994-2009.	2.9	110
31	Antioxidant Properties of Cerium Oxide Nanocrystals as a Function of Nanocrystal Diameter and Surface Coating. ACS Nano, 2013, 7, 9693-9703.	14.6	338
32	Remodeling the Proteostasis Network to Rescue Glucocerebrosidase Variants by Inhibiting ER-Associated Degradation and Enhancing ER Folding. PLoS ONE, 2013, 8, e61418.	2.5	21
33	Chemical Induction of Hsp70 Reduces α-Synuclein Aggregation in Neuroglioma Cells. ACS Chemical Biology, 2013, 8, 1460-1468.	3.4	61
34	A Rapid and Sensitive Method for Measuring N-Acetylglucosaminidase Activity in Cultured Cells. PLoS ONE, 2013, 8, e68060.	2.5	14
35	Detection of α-Synuclein Amyloidogenic Aggregates <i>in Vitro</i> and in Cells using Light-Switching Dipyridophenazine Ruthenium(II) Complexes. Journal of the American Chemical Society, 2012, 134, 20776-20782.	13.7	83
36	Quantitative Analysis of α-Synuclein Solubility in Living Cells Using Split GFP Complementation. PLoS ONE, 2012, 7, e43505.	2.5	21

LAURA SEGATORI

#	Article	IF	CITATIONS
37	Increased resistance to oxysterol cytotoxicity in fibroblasts transfected with a lysosomally targeted <i>Chromobacterium</i> oxidase. Biotechnology and Bioengineering, 2012, 109, 2409-2415.	3.3	22
38	Ca ²⁺ Homeostasis Modulation Enhances the Amenability of L444P Glucosylcerebrosidase to Proteostasis Regulation in Patient-Derived Fibroblasts. ACS Chemical Biology, 2011, 6, 158-168.	3.4	28
39	Lacidipine Remodels Protein Folding and Ca2+ Homeostasis in Gaucher's Disease Fibroblasts: A Mechanism to Rescue Mutant Glucocerebrosidase. Chemistry and Biology, 2011, 18, 766-776.	6.0	28
40	Inhibition of Endoplasmic Reticulum-associated Degradation Rescues Native Folding in Loss of Function Protein Misfolding Diseases. Journal of Biological Chemistry, 2011, 286, 43454-43464.	3.4	87
41	Development of an ELISAâ€based screening assay for the selection of αâ€5ynuclein Phosphorylation modulators. FASEB Journal, 2010, 24, 522.1.	0.5	1
42	Chemical and Biological Approaches Synergize to Ameliorate Protein-Folding Diseases. Cell, 2008, 134, 769-781.	28.9	332
43	De Novo Design and Evolution of Artificial Disulfide Isomerase Enzymes Analogous to the Bacterial DsbC. Journal of Biological Chemistry, 2008, 283, 31469-31476.	3.4	16
44	Conserved Role of the Linker α-Helix of the Bacterial Disulfide Isomerase DsbC in the Avoidance of Misoxidation by DsbB. Journal of Biological Chemistry, 2006, 281, 4911-4919.	3.4	32
45	Preparative expression of secreted proteins in bacteria: status report and future prospects. Current Opinion in Biotechnology, 2005, 16, 538-545.	6.6	186
46	Engineered DsbC chimeras catalyze both protein oxidation and disulfide-bond isomerization in Escherichia coli: Reconciling two competing pathways. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10018-10023.	7.1	46
47	Structure of DsbC fromHaemophilus influenzae. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 1512-1518.	2.5	15