Brent S Sumerlin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/358655/publications.pdf Version: 2024-02-01

		8208	9346
208	23,132	78	148
papers	citations	h-index	g-index
210	210	210	10500
218	218	218	19589
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Synthesis of poly(<scp>1â€vinylimidazole</scp>)â€ <scp><i>block</i>â€poly</scp> (<scp>9â€vinylcarbazole</scp>) copolymers via <scp>RAFT</scp> and their use in chemically responsive graphitic composites. Journal of Polymer Science, 2022, 60, 674-687.	2.0	2
2	Janus Cross-links in Supramolecular Networks. Journal of the American Chemical Society, 2022, 144, 845-853.	6.6	21
3	Photoinduced SET to access olefin-acrylate copolymers. Polymer Chemistry, 2022, 13, 982-988.	1.9	20
4	Backbone Degradation of Polymethacrylates via Metal-Free Ambient-Temperature Photoinduced Single-Electron Transfer. ACS Macro Letters, 2022, 11, 441-446.	2.3	44
5	Hyperbranched Bisphosphonateâ€Functional Polymers via Selfâ€Condensing Vinyl Polymerization and Postpolymerization Multicomponent Reactions. Macromolecular Rapid Communications, 2021, 42, e2000578.	2.0	8
6	Tethered Tungsten-Alkylidenes for the Synthesis of Cyclic Polynorbornene via Ring Expansion Metathesis: Unprecedented Stereoselectivity and Trapping of Key Catalytic Intermediates. Journal of the American Chemical Society, 2021, 143, 1235-1246.	6.6	27
7	Self-catalyzing photoredox polymerization for recyclable polymer catalysts. Polymer Chemistry, 2021, 12, 2205-2209.	1.9	18
8	<i>In situ</i> monitoring of PISA morphologies. Polymer Chemistry, 2021, 12, 3947-3952.	1.9	26
9	Photo-liberated amines for <i>N</i> -carboxyanhydride (PLANCA) ring-opening polymerization. Polymer Chemistry, 2021, 12, 4104-4110.	1.9	4
10	Mediating covalent crosslinking of single-chain nanoparticles through solvophobicity in organic solvents. Polymer Chemistry, 2021, 12, 4462-4466.	1.9	8
11	Probing Thermoresponsive Polymerization-Induced Self-Assembly with Variable-Temperature Liquid-Cell Transmission Electron Microscopy. Matter, 2021, 4, 722-736.	5.0	33
12	Macromolecular Photocatalyst for Synthesis and Purification of Protein–Polymer Conjugates. Macromolecules, 2021, 54, 4880-4888.	2.2	19
13	Amphiphilic gel lubrication and the solvophilic transition. Biotribology, 2021, 26, 100170.	0.9	3
14	Cyclic polyacetylene. Nature Chemistry, 2021, 13, 792-799.	6.6	51
15	Hybrid Block Copolymer Synthesis by Merging Photoiniferter and Organocatalytic Ringâ€Opening Polymerizations. Angewandte Chemie, 2021, 133, 18685-18689.	1.6	2
16	Hybrid Block Copolymer Synthesis by Merging Photoiniferter and Organocatalytic Ringâ€Opening Polymerizations. Angewandte Chemie - International Edition, 2021, 60, 18537-18541.	7.2	26
17	Aptamer-Conjugated Micelles for Targeted Photodynamic Therapy <i>Via</i> Photoinitiated Polymerization-Induced Self-Assembly. Macromolecules, 2021, 54, 7354-7363.	2.2	20
18	Soluble Polymer Precursors via Ring-Expansion Metathesis Polymerization for the Synthesis of Cyclic Polyacetylene. Macromolecules, 2021, 54, 7840-7848.	2.2	19

#	Article	IF	CITATIONS
19	Progress on Stimuliâ€Responsive Polymers. Macromolecular Rapid Communications, 2021, 42, e2100512.	2.0	12
20	Semi-conducting cyclic copolymers of acetylene and propyne. Reactive and Functional Polymers, 2021, 169, 105088.	2.0	11
21	Transport and retention of polymeric and other engineered nanoparticles in porous media. NanoImpact, 2021, 24, 100361.	2.4	6
22	Superficial Modulus, Water-Content, and Mesh-Size at Hydrogel Surfaces. Tribology Letters, 2021, 69, 1.	1.2	8
23	Glassâ€ŧransition temperature governs the thermal decrosslinking behavior of Diels–Alder crosslinked polymethacrylate networks. Journal of Polymer Science, 2020, 58, 193-203.	2.0	8
24	Bulk network polymers with dynamic B–O bonds: healable and reprocessable materials. Materials Horizons, 2020, 7, 694-714.	6.4	151
25	Block Copolymer Vitrimers. Journal of the American Chemical Society, 2020, 142, 283-289.	6.6	172
26	Proapoptotic Peptide Brush Polymer Nanoparticles via Photoinitiated Polymerizationâ€Induced Selfâ€Assembly. Angewandte Chemie, 2020, 132, 19298-19304.	1.6	10
27	Proapoptotic Peptide Brush Polymer Nanoparticles via Photoinitiated Polymerizationâ€Induced Selfâ€Assembly. Angewandte Chemie - International Edition, 2020, 59, 19136-19142.	7.2	49
28	Modular Genetic Code Expansion Platform and PISA Yield Well-Defined Protein-Polymer Assemblies. Biomacromolecules, 2020, 21, 5077-5085.	2.6	13
29	The Next 100 Years of Polymer Science. Macromolecular Chemistry and Physics, 2020, 221, 2000216.	1.1	69
30	Use of polymeric nanoparticles to improve seed germination and plant growth under copper stress. Science of the Total Environment, 2020, 745, 141055.	3.9	44
31	Synthesis of functional 1,2-dithiolanes from 1,3-bis-tert-butyl thioethers. Organic and Biomolecular Chemistry, 2020, 18, 6509-6513.	1.5	8
32	Effect of Polymer Chemistry on the Linear Viscoelasticity of Complex Coacervates. Macromolecules, 2020, 53, 7851-7864.	2.2	47
33	Cyclic Poly(4-methyl-1-pentene): Efficient Catalytic Synthesis of a Transparent Cyclic Polymer. Macromolecules, 2020, 53, 7774-7782.	2.2	40
34	Ultra-High-Molecular-Weight Macrocyclic Bottlebrushes via Post-Polymerization Modification of a Cyclic Polymer. Macromolecules, 2020, 53, 9717-9724.	2.2	36
35	Enlightening advances in polymer bioconjugate chemistry: light-based techniques for grafting to and from biomacromolecules. Chemical Science, 2020, 11, 5142-5156.	3.7	60
36	Harnessing Strained Disulfides for Photocurable Adaptable Hydrogels. Macromolecules, 2020, 53, 4038-4046.	2.2	41

#	Article	IF	CITATIONS
37	Polystyrene-Based Vitrimers: Inexpensive and Recyclable Thermosets. ACS Applied Polymer Materials, 2020, 2, 3044-3048.	2.0	50
38	Comparative assessment of polymeric and other nanoparticles impacts on soil microbial and biochemical properties. Geoderma, 2020, 367, 114278.	2.3	30
39	Ultrahigh Molecular Weight Hydrophobic Acrylic and Styrenic Polymers through Organic-Phase Photoiniferter-Mediated Polymerization. ACS Macro Letters, 2020, 9, 613-618.	2.3	79
40	Post-polymerization modification of polymethacrylates enabled by keto–enol tautomerization. Polymer Chemistry, 2020, 11, 2955-2958.	1.9	12
41	Glassâ€ŧransition temperature governs the thermal decrosslinking behavior of Diels–Alder crosslinked polymethacrylate networks. Journal of Polymer Science, 2020, 58, 193-203.	2.0	1
42	pH-Responsive Water-Soluble Cyclic Polymer. Macromolecules, 2019, 52, 6260-6265.	2.2	45
43	Quantitative characterization of 3D bioprinted structural elements under cell generated forces. Nature Communications, 2019, 10, 3029.	5.8	73
44	Anthracene-based mechanophores for compression-activated fluorescence in polymeric networks. Chemical Science, 2019, 10, 7702-7708.	3.7	53
45	Block Copolymer Sequence Inversion through Photoiniferter Polymerization. ACS Macro Letters, 2019, 8, 1461-1466.	2.3	38
46	Theranostic nanocarriers combining high drug loading and magnetic particle imaging. International Journal of Pharmaceutics, 2019, 572, 118796.	2.6	18
47	Externally Triggered Heat and Drug Release from Magnetically Controlled Nanocarriers. ACS Applied Polymer Materials, 2019, 1, 211-220.	2.0	47
48	Adaptable Crosslinks in Polymeric Materials: Resolving the Intersection of Thermoplastics and Thermosets. Journal of the American Chemical Society, 2019, 141, 16181-16196.	6.6	514
49	Synthesis of functional and boronic acid-containing aliphatic polyesters <i>via</i> Suzuki coupling. Chemical Communications, 2019, 55, 5655-5658.	2.2	21
50	Jammed Polyelectrolyte Microgels for 3D Cell Culture Applications: Rheological Behavior with Added Salts. ACS Applied Bio Materials, 2019, 2, 1509-1517.	2.3	35
51	Catalyst-Free Vitrimers from Vinyl Polymers. Macromolecules, 2019, 52, 2105-2111.	2.2	205
52	UV-induced vesicle to micelle transition: a mechanistic study. Polymer Chemistry, 2019, 10, 6037-6046.	1.9	6
53	Polypropylene: Now Available without Chain Ends. CheM, 2019, 5, 237-244.	5.8	53
54	Architecture-transformable polymers: Reshaping the future of stimuli-responsive polymers. Progress in Polymer Science, 2019, 89, 61-75.	11.8	215

#	Article	IF	CITATIONS
55	Synthesis of Multifunctional Homopolymers through Using Thiazolidine Chemistry and Postâ€Polymerization Modification. Macromolecular Rapid Communications, 2019, 40, 1800590.	2.0	6
56	Polymerization-Induced Self-Assembly of Micelles Observed by Liquid Cell Transmission Electron Microscopy. ACS Central Science, 2018, 4, 543-547.	5.3	89
57	Polyelectrolyte scaling laws for microgel yielding near jamming. Soft Matter, 2018, 14, 1559-1570.	1.2	42
58	Color-Coding Visible Light Polymerizations To Elucidate the Activation of Trithiocarbonates Using Eosin Y. Macromolecules, 2018, 51, 1370-1376.	2.2	126
59	Harnessing Imine Diversity To Tune Hyperbranched Polymer Degradation. Macromolecules, 2018, 51, 356-363.	2.2	31
60	Engineering the Surface Properties of Poly(dimethylsiloxane) Utilizing Aqueous RAFT Photografting of Acrylate/Methacrylate Monomers. Macromolecules, 2018, 51, 306-317.	2.2	17
61	Photoreversible Covalent Hydrogels for Soft-Matter Additive Manufacturing. ACS Applied Materials & Interfaces, 2018, 10, 16793-16801.	4.0	105
62	Maximizing the symbiosis of static and dynamic bonds in self-healing boronic ester networks. Polymer Chemistry, 2018, 9, 2011-2020.	1.9	151
63	Structure–Reactivity Relationships in Boronic Acid–Diol Complexation. ACS Omega, 2018, 3, 17863-17870.	1.6	120
64	Probing Membrane Hydration at the Interface of Self-Assembled Peptide Amphiphiles Using Electron Paramagnetic Resonance. ACS Macro Letters, 2018, 7, 1261-1266.	2.3	10
65	Next-generation self-healing materials. Science, 2018, 362, 150-151.	6.0	60
66	Selfâ€Assembled Aptamerâ€Grafted Hyperbranched Polymer Nanocarrier for Targeted and Photoresponsive Drug Delivery. Angewandte Chemie, 2018, 130, 17294-17298.	1.6	31
67	Selfâ€Assembled Aptamerâ€Grafted Hyperbranched Polymer Nanocarrier for Targeted and Photoresponsive Drug Delivery. Angewandte Chemie - International Edition, 2018, 57, 17048-17052.	7.2	122
68	Synthesis of multifunctional homopolymers <i>via</i> sequential post-polymerization reactions. Polymer Chemistry, 2018, 9, 4605-4610.	1.9	31
69	Self-Healing Boronic Acid-Based Hydrogels for 3D Co-cultures. ACS Macro Letters, 2018, 7, 1105-1110.	2.3	126
70	Alternating Radical Ring-Opening Polymerization of Cyclic Ketene Acetals: Access to Tunable and Functional Polyester Copolymers. Macromolecules, 2018, 51, 5079-5084.	2.2	59
71	Next generation proteinâ€polymer conjugates. AICHE Journal, 2018, 64, 3230-3245.	1.8	64
72	Crossâ€Linked Aptamer–Lipid Micelles for Excellent Stability and Specificity in Target ell Recognition. Angewandte Chemie - International Edition, 2018, 57, 11589-11593.	7.2	33

#	Article	IF	CITATIONS
73	Aqueous Visible-Light RAFT Polymerizations and Applications. ACS Symposium Series, 2018, , 43-56.	0.5	5
74	Functional Diversification of Polymethacrylates by Dynamic β-Ketoester Modification. Macromolecules, 2018, 51, 6380-6386.	2.2	26
75	Crossâ€Linked Aptamer–Lipid Micelles for Excellent Stability and Specificity in Targetâ€Cell Recognition. Angewandte Chemie, 2018, 130, 11763-11767.	1.6	8
76	Efficiency of Biodegradable and pHâ€Responsive Polysuccinimide Nanoparticles (PSIâ€NPs) as Smart Nanodelivery Systems in Grapefruit: In Vitro Cellular Investigation. Macromolecular Bioscience, 2018, 18, e1800159.	2.1	28
77	Tuning Hydrophobicity To Program Block Copolymer Assemblies from the Inside Out. Macromolecules, 2017, 50, 935-943.	2.2	166
78	Poly(N-(2-hydroxypropyl)methacrylamide)–valproic acid conjugates as block copolymer nanocarriers. Polymer Chemistry, 2017, 8, 4983-4987.	1.9	24
79	Editorial for Virtual Issue on Polymer Bioconjugates in Biology and Medicine. Bioconjugate Chemistry, 2017, 28, 282-282.	1.8	1
80	Macromolecular metamorphosis via stimulus-induced transformations of polymer architecture. Nature Chemistry, 2017, 9, 817-823.	6.6	174
81	Ultra-High Molecular Weights via Aqueous Reversible-Deactivation Radical Polymerization. CheM, 2017, 2, 93-101.	5.8	215
82	Editorial for Virtual Issue on Polymer Bioconjugates in Biology and Medicine. Chemical Reviews, 2017, 117, 900-900.	23.0	2
83	Catalyst-Free Photoinduced End-Group Removal of Thiocarbonylthio Functionality. ACS Macro Letters, 2017, 6, 185-189.	2.3	62
84	Editorial for Virtual Issue on Polymer Bioconjugates in Biology and Medicine. Biomacromolecules, 2017, 18, 315-315.	2.6	0
85	Editorial for Virtual Issue on Polymer Bioconjugates in Biology and Medicine. Macromolecules, 2017, 50, 713-713.	2.2	0
86	Triple responsive block copolymers combining pHâ€responsive, thermoresponsive, and glucoseâ€responsive behaviors. Journal of Polymer Science Part A, 2017, 55, 2309-2317.	2.5	34
87	Self-assembled micro-organogels for 3D printing silicone structures. Science Advances, 2017, 3, e1602800.	4.7	195
88	Thiol–ene click chemistry: a biocompatible way for orthogonal bioconjugation of colloidal nanoparticles. Chemical Science, 2017, 8, 6182-6187.	3.7	89
89	Editorial for Virtual Issue on Polymer Bioconjugates in Biology and Medicine. ACS Macro Letters, 2017, 6, 144-144.	2.3	3
90	Grafting-From Proteins Using Metal-Free PET–RAFT Polymerizations under Mild Visible-Light Irradiation. ACS Macro Letters, 2017, 6, 452-457.	2.3	137

#	Article	IF	CITATIONS
91	Mild and efficient synthesis of ï‰,ï‰-heterodifunctionalized polymers and polymer bioconjugates. Polymer Chemistry, 2017, 8, 2457-2461.	1.9	12
92	Star Architecture Promoting Morphological Transitions during Polymerization-Induced Self-Assembly. ACS Macro Letters, 2017, 6, 337-342.	2.3	99
93	Near-IR-induced dissociation of thermally-sensitive star polymers. Chemical Science, 2017, 8, 1815-1821.	3.7	32
94	Synthetic upcycling of polyacrylates through organocatalyzed post-polymerization modification. Chemical Science, 2017, 8, 7705-7709.	3.7	79
95	Modular and rapid access to amphiphilic homopolymers via successive chemoselective post-polymerization modification. Polymer Chemistry, 2017, 8, 6028-6032.	1.9	19
96	Radical Ring-Opening Copolymerization of Cyclic Ketene Acetals and Maleimides Affords Homogeneous Incorporation of Degradable Units. ACS Macro Letters, 2017, 6, 1071-1077.	2.3	63
97	Domain Spacing and Composition Profile Behavior in Salt-Doped Cyclic vs Linear Block Polymer Thin Films: A Joint Experimental and Simulation Study. Macromolecules, 2017, 50, 7169-7176.	2.2	27
98	<i>50th Anniversary Perspective</i> : Polymer Functionalization. Macromolecules, 2017, 50, 5215-5252.	2.2	318
99	Closedâ€5ystem Oneâ€Pot Block Copolymerization by Temperatureâ€Modulated Monomer Segregation. Angewandte Chemie, 2016, 128, 8766-8771.	1.6	10
100	Closedâ€System Oneâ€Pot Block Copolymerization by Temperatureâ€Modulated Monomer Segregation. Angewandte Chemie - International Edition, 2016, 55, 8624-8629.	7.2	22
101	Employing a Sugar-Derived Dimethacrylate to Evaluate Controlled Branch Growth during Polymerization with Multiolefinic Compounds. Macromolecules, 2016, 49, 9396-9405.	2.2	10
102	Highly Tactic Cyclic Polynorbornene: Stereoselective Ring Expansion Metathesis Polymerization of Norbornene Catalyzed by a New Tethered Tungsten-Alkylidene Catalyst. Journal of the American Chemical Society, 2016, 138, 4996-4999.	6.6	82
103	DNA micelle flares: a study of the basic properties that contribute to enhanced stability and binding affinity in complex biological systems. Chemical Science, 2016, 7, 6041-6049.	3.7	37
104	Multifunctional Homopolymers: Postpolymerization Modification via Sequential Nucleophilic Aromatic Substitution. Macromolecules, 2016, 49, 2077-2084.	2.2	41
105	Hyperbranched polymers via RAFT self-condensing vinyl polymerization. Polymer Chemistry, 2016, 7, 3361-3369.	1.9	89
106	Introducing "Ynene―Metathesis: Ring-Expansion Metathesis Polymerization Leads to Highly Cis and Syndiotactic Cyclic Polymers of Norbornene. Journal of the American Chemical Society, 2016, 138, 6408-6411.	6.6	77
107	Synthesis of novel boronic acid-decorated poly(2-oxazoline)s showing triple-stimuli responsive behavior. Polymer Chemistry, 2016, 7, 6725-6734.	1.9	31
108	Radical Departure: Thermally-Triggered Degradation of Azo-Containing Poly(β-thioester)s. ACS Macro Letters, 2016, 5, 688-693.	2.3	32

#	Article	IF	CITATIONS
109	Modular segmented hyperbranched copolymers. Polymer Chemistry, 2016, 7, 4155-4159.	1.9	21
110	Doubly-dynamic-covalent polymers composed of oxime and oxanorbornene links. Polymer Chemistry, 2016, 7, 1971-1978.	1.9	38
111	Hyperbranched poly(N-(2-hydroxypropyl) methacrylamide) via RAFT self-condensing vinyl polymerization. Polymer Chemistry, 2016, 7, 2099-2104.	1.9	47
112	Synthesis and Applications of Boronic Acid-Containing Polymers: From Materials to Medicine. Chemical Reviews, 2016, 116, 1375-1397.	23.0	714
113	Macromol. Rapid Commun. 9/2015. Macromolecular Rapid Communications, 2015, 36, 860-860.	2.0	0
114	Synthesis of amphiphilic polysuccinimide star copolymers for responsive delivery in plants. Chemical Communications, 2015, 51, 9694-9697.	2.2	29
115	Boronic Acid-Based Hydrogels Undergo Self-Healing at Neutral and Acidic pH. ACS Macro Letters, 2015, 4, 220-224.	2.3	354
116	Expanding the Scope of RAFT Polymerization: Recent Advances and New Horizons. Macromolecules, 2015, 48, 5459-5469.	2.2	413
117	Self-healing hydrogels containing reversible oxime crosslinks. Soft Matter, 2015, 11, 6152-6161.	1.2	162
118	Role of Polymer Architecture on the Activity of Polymer–Protein Conjugates for the Treatment of Accelerated Bone Loss Disorders. Biomacromolecules, 2015, 16, 2374-2381.	2.6	24
119	Facile synthesis of drug-conjugated PHPMA core-crosslinked star polymers. Polymer Chemistry, 2015, 6, 4258-4263.	1.9	45
120	Biodegradable and pH-Responsive Nanoparticles Designed for Site-Specific Delivery in Agriculture. Biomacromolecules, 2015, 16, 1276-1282.	2.6	62
121	Room-Temperature Self-Healing Polymers Based on Dynamic-Covalent Boronic Esters. Macromolecules, 2015, 48, 2098-2106.	2.2	534
122	Polymerization-induced thermal self-assembly (PITSA). Chemical Science, 2015, 6, 1230-1236.	3.7	301
123	Aminobisphosphonate Polymers via RAFT and a Multicomponent Kabachnik–Fields Reaction. Macromolecular Rapid Communications, 2015, 36, 828-833.	2.0	39
124	Boronic Acid Linear Homopolymers as Effective Emulsifiers and Gelators. ACS Applied Materials & Interfaces, 2015, 7, 21668-21672.	4.0	25
125	Doubly-responsive hyperbranched polymers and core-crosslinked star polymers with tunable reversibility. Polymer Chemistry, 2015, 6, 7871-7880.	1.9	34
126	Photo-PISA: Shedding Light on Polymerization-Induced Self-Assembly. ACS Macro Letters, 2015, 4, 1249-1253.	2.3	324

#	Article	IF	CITATIONS
127	Efficient and Chemoselective Synthesis of ω,ω-Heterodifunctional Polymers. ACS Macro Letters, 2015, 4, 1114-1118.	2.3	33
128	Probing the surface-localized hyperthermia of gold nanoparticles in a microwave field using polymeric thermometers. Chemical Science, 2015, 6, 5662-5669.	3.7	40
129	Beyond microstructures: Using the Kerr Effect to characterize the macrostructures of synthetic polymers. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 155-166.	2.4	13
130	Smart hybrid materials by conjugation of responsive polymers to biomacromolecules. Nature Materials, 2015, 14, 143-159.	13.3	512
131	Let There Be Light: Photo rossâ€Linked Block Copolymer Nanoparticles. Macromolecular Rapid Communications, 2014, 35, 174-179.	2.0	22
132	Some More Insights on Precisely Controlled Polymer Architectures. Macromolecular Rapid Communications, 2014, 35, 377-377.	2.0	4
133	Precisely Controlled Polymer Architectures. Macromolecular Rapid Communications, 2014, 35, 122-122.	2.0	12
134	Oximes as reversible links in polymer chemistry: dynamic macromolecular stars. Polymer Chemistry, 2014, 5, 6923-6931.	1.9	64
135	A photonic glucose biosensor for chronic wound prognostics. Journal of Materials Chemistry B, 2014, 2, 3972-3983.	2.9	29
136	Poly(N-(2-hydroxypropyl) methacrylamide)-based nanotherapeutics. Polymer Chemistry, 2014, 5, 1566-1572.	1.9	73
137	Thermally-labile segmented hyperbranched copolymers: using reversible-covalent chemistry to investigate the mechanism of self-condensing vinyl copolymerization. Chemical Science, 2014, 5, 4646-4655.	3.7	73
138	Stimuli responsive materials. Chemical Society Reviews, 2013, 42, 7055.	18.7	404
139	Precision Control of Temperature Response by Copolymerization of Di(Ethylene Glycol) Acrylate and an Acrylamide Comonomer. Macromolecular Chemistry and Physics, 2013, 214, 272-279.	1.1	46
140	New directions in thermoresponsive polymers. Chemical Society Reviews, 2013, 42, 7214.	18.7	1,098
141	Redox-Responsive Dynamic-Covalent Assemblies: Stars and Miktoarm Stars. Macromolecules, 2013, 46, 2188-2198.	2.2	94
142	Characterizing polymer macrostructures by identifying and locating microstructures along their chains with the kerr effect. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 735-741.	2.4	15
143	Modular oxime functionalization of well-defined alkoxyamine-containing polymers. Polymer Chemistry, 2012, 3, 1758-1762.	1.9	39
144	Proteins as Initiators of Controlled Radical Polymerization: Grafting-from via ATRP and RAFT. ACS Macro Letters, 2012, 1, 141-145.	2.3	189

#	Article	IF	CITATIONS
145	Glucose-Sensitivity of Boronic Acid Block Copolymers at Physiological pH. ACS Macro Letters, 2012, 1, 529-532.	2.3	154
146	Tuning the sugarâ€response of boronic acid block copolymers. Journal of Polymer Science Part A, 2012, 50, 3373-3382.	2.5	58
147	Polymer Science: The Next Generation. Macromolecular Rapid Communications, 2012, 33, 721-721.	2.0	3
148	Microwaveâ€Assisted RAFT Polymerization. Israel Journal of Chemistry, 2012, 52, 256-263.	1.0	27
149	Reversible Addition-Fragmentation Chain Transfer Polymerization under Microwave Heating Conditions. ACS Symposium Series, 2012, , 277-291.	0.5	7
150	Activity Control of Mussel Glue Derived Enzymes: A Study on Thermoresponsive Tyrosinase-PNIPAM Conjugates. ACS Symposium Series, 2012, , 271-285.	0.5	3
151	Dynamic-covalent nanostructures prepared by Diels–Alder reactions of styrene-maleic anhydride-derived copolymers obtained by one-step cascade block copolymerization. Polymer Chemistry, 2012, 3, 3112.	1.9	99
152	Polymer bioconjugates. Polymer Chemistry, 2011, 2, 1427.	1.9	8
153	Block copolymer conjugates prepared by sequentially grafting from proteins via RAFT. Polymer Chemistry, 2011, 2, 1531.	1.9	95
154	Protein conjugation of thermoresponsive amine-reactive polymers prepared by RAFT. Polymer Chemistry, 2011, 2, 323-327.	1.9	88
155	Dynamic-Covalent Macromolecular Stars with Boronic Ester Linkages. Journal of the American Chemical Society, 2011, 133, 19832-19838.	6.6	214
156	Biomedical applications of boronic acid polymers. Polymer, 2011, 52, 4631-4643.	1.8	364
157	Thermoresponsive Block Copolymer–Protein Conjugates Prepared by Graftingâ€from via RAFT Polymerization. Macromolecular Rapid Communications, 2011, 32, 354-359.	2.0	89
158	Effect of chain topology on the self-organization and the mechanical properties of poly(n-butyl) Tj ETQq0 0 0 rgE	3T /Overloo 1.8	ck
159	Block copolymerization of vinyl ester monomers via RAFT/MADIX under microwave irradiation. Polymer, 2011, 52, 3038-3045.	1.8	35
160	Surface Modification of Positive Contrast Nanoparticle Agents with RAFT Polymers Towards the Targeted Imaging and Treatment of Cancer. ACS Symposium Series, 2010, , 65-101.	0.5	2
161	Future perspectives and recent advances in stimuli-responsive materials. Progress in Polymer Science, 2010, 35, 278-301.	11.8	1,297
162	Facile synthesis of thiol-terminated poly(styrene-ran-vinyl phenol) (PSVPh) copolymers via reversible addition-fragmentation chain transfer (RAFT) polymerization and their use in the synthesis of gold nanoparticles with controllable hydrophilicity. Polymer, 2010, 51, 1244-1251.	1.8	29

#	Article	IF	CITATIONS
163	Macromolecular Engineering through Click Chemistry and Other Efficient Transformations. Macromolecules, 2010, 43, 1-13.	2.2	648
164	Conjugation of RAFT-generated polymers to proteins by two consecutive thiol–ene reactions. Polymer Chemistry, 2010, 1, 854.	1.9	140
165	Tuning the Magnetic Resonance Imaging Properties of Positive Contrast Agent Nanoparticles by Surface Modification with RAFT Polymers. Langmuir, 2009, 25, 9487-9499.	1.6	119
166	Boronic Acid-Terminated Polymers: Synthesis by RAFT and Subsequent Supramolecular and Dynamic Covalent Self-Assembly. Macromolecules, 2009, 42, 5614-5621.	2.2	100
167	Temperature and redox responsive hydrogels from ABA triblock copolymers prepared by RAFT polymerization. Soft Matter, 2009, 5, 2347-2351.	1.2	144
168	Triply-responsive boronic acid block copolymers: solution self-assembly induced by changes in temperature, pH, or sugar concentration. Chemical Communications, 2009, , 2106.	2.2	246
169	Rapid Block Copolymer Synthesis by Microwave-Assisted RAFT Polymerization. Macromolecules, 2009, 42, 7701-7708.	2.2	69
170	End group transformations of RAFTâ€generated polymers with bismaleimides: Functional telechelics and modular block copolymers. Journal of Polymer Science Part A, 2008, 46, 5093-5100.	2.5	217
171	Responsive Polymerâ€Protein Bioconjugates Prepared by RAFT Polymerization and Copper atalyzed Azideâ€Alkyne Click Chemistry. Macromolecular Rapid Communications, 2008, 29, 1172-1176.	2.0	178
172	Cylindrical molecular brushes: Synthesis, characterization, and properties. Progress in Polymer Science, 2008, 33, 759-785.	11.8	1,035
173	Development of biodegradable crosslinked urethane-doped polyester elastomers. Biomaterials, 2008, 29, 4637-4649.	5.7	112
174	Folate-Conjugated Thermoresponsive Block Copolymers: Highly Efficient Conjugation and Solution Self-Assembly. Biomacromolecules, 2008, 9, 1064-1070.	2.6	198
175	Temperature-Regulated Activity of Responsive Polymerâ^'Protein Conjugates Prepared by Grafting-from via RAFT Polymerization. Journal of the American Chemical Society, 2008, 130, 11288-11289.	6.6	391
176	RAFT-synthesized diblock and triblock copolymers: thermally-induced supramolecular assembly in aqueous media. Soft Matter, 2008, 4, 1760.	1.2	192
177	Sugar-responsive block copolymers by direct RAFT polymerization of unprotected boronic acid monomers. Chemical Communications, 2008, , 2477.	2.2	181
178	Tuning the Temperature Response of Branched Poly(<i>N</i> -isopropylacrylamide) Prepared by RAFT Polymerization. Macromolecules, 2008, 41, 7368-7373.	2.2	142
179	pH Response of Model Diblock and Triblock Copolymer Networks Containing Polystyrene and Poly(2-hydroxyethyl methacrylate-co-2-(dimethylamino)ethyl methacrylate). Macromolecules, 2008, 41, 4390-4397.	2.2	29
180	Hyperbranched Polymers via RAFT Copolymerization of an Acryloyl Trithiocarbonate. Australian Journal of Chemistry, 2007, 60, 396.	0.5	91

#	Article	IF	CITATIONS
181	Multisegmented Block Copolymers by 'Click' Coupling of Polymers Prepared by ATRP. Australian Journal of Chemistry, 2007, 60, 400.	0.5	71
182	Versatile Pathway to Functional Telechelics via RAFT Polymerization and Click Chemistry. Macromolecules, 2007, 40, 474-481.	2.2	215
183	Facile Strategy to Well-Defined Water-Soluble Boronic Acid (Co)polymers. Journal of the American Chemical Society, 2007, 129, 10348-10349.	6.6	148
184	Solution Behavior of Temperature-Responsive Molecular Brushes Prepared by ATRP. Macromolecular Chemistry and Physics, 2007, 208, 30-36.	1.1	105
185	Structural mobility of molecular bottle-brushes investigated by NMR relaxation dynamics. Polymer, 2007, 48, 496-501.	1.8	35
186	An Efficient Route to Macromonomers via ATRP and Click Chemistry. Macromolecules, 2006, 39, 5286-5292.	2.2	193
187	Catalyst Performance in "Click―Coupling Reactions of Polymers Prepared by ATRP: Ligand and Metal Effects. Macromolecules, 2006, 39, 6451-6457.	2.2	217
188	Acrylate-Based Block Copolymers Prepared by Atom Transfer Radical Polymerization as Matrices for Drug Delivery Applications. ACS Symposium Series, 2006, , 234-251.	0.5	7
189	Click Functionalization of Well-Defined Copolymers Prepared by Atom Transfer Radical Polymerization. ACS Symposium Series, 2006, , 140-152.	0.5	12
190	Synthesis of Terminally Functionalized (Co)Polymers via Reversible Addition Fragmentation Chain Transfer Polymerization and Subsequent Immobilization to Solid Surfaces with Potential Biosensor Applications. ACS Symposium Series, 2005, , 43-54.	0.5	5
191	Highly Efficient "Click―Functionalization of Poly(3-azidopropyl methacrylate) Prepared by ATRP. Macromolecules, 2005, 38, 7540-7545.	2.2	438
192	Initiation Efficiency in the Synthesis of Molecular Brushes by Grafting from via Atom Transfer Radical Polymerization. Macromolecules, 2005, 38, 702-708.	2.2	224
193	Gradient Polymer Elution Chromatographic Analysis of α,ï‰-Dihydroxypolystyrene Synthesized via ATRP and Click Chemistry. Macromolecules, 2005, 38, 8979-8982.	2.2	146
194	Step-Growth "Click―Coupling of Telechelic Polymers Prepared by Atom Transfer Radical Polymerization. Macromolecules, 2005, 38, 3558-3561.	2.2	427
195	Evaluation of Acrylate-Based Block Copolymers Prepared by Atom Transfer Radical Polymerization as Matrices for Paclitaxel Delivery from Coronary Stents. Biomacromolecules, 2005, 6, 3410-3418.	2.6	75
196	Aqueous solution properties of pH-responsive AB diblock acrylamido-styrenic copolymers synthesized via aqueous reversible addition-fragmentation chain transfer. Journal of Polymer Science Part A, 2004, 42, 1724-1734.	2.5	85
197	How dense are cylindrical brushes grafted from a multifunctional macroinitiator?. Polymer, 2004, 45, 8173-8179.	1.8	140
198	RAFT Polymerization in Homogeneous Aqueous Media. ACS Symposium Series, 2003, , 586-602.	0.5	7

#	Article	IF	CITATIONS
199	The direct polymerization of 2-methacryloxyethyl glucoside via aqueous reversible addition-fragmentation chain transfer (RAFT) polymerization. Polymer, 2003, 44, 6761-6765.	1.8	148
200	Aqueous Solution Properties of pH-Responsive AB Diblock Acrylamido Copolymers Synthesized via Aqueous RAFTâ€. Macromolecules, 2003, 36, 5982-5987.	2.2	137
201	Modification of Gold Surfaces with Water-Soluble (Co)polymers Prepared via Aqueous Reversible Additionâ^'Fragmentation Chain Transfer (RAFT) Polymerizationâ€. Langmuir, 2003, 19, 5559-5562.	1.6	195
202	Conditions for Facile, Controlled RAFT Polymerization of Acrylamide in Waterâ€. Macromolecules, 2003, 36, 1436-1439.	2.2	129
203	Synthesis of Block Copolymers of 2- and 4-Vinylpyridine by RAFT Polymerization. Macromolecules, 2003, 36, 4679-4681.	2.2	123
204	Controlled/"Living―Polymerization of Sulfobetaine Monomers Directly in Aqueous Media via RAFTâ€. Macromolecules, 2002, 35, 8663-8666.	2.2	121
205	RAFT Polymerization ofN,N-Dimethylacrylamide in Waterâ€. Macromolecules, 2002, 35, 4570-4572.	2.2	144
206	Facile Preparation of Transition Metal Nanoparticles Stabilized by Well-Defined (Co)polymers Synthesized via Aqueous Reversible Addition-Fragmentation Chain Transfer Polymerization. Journal of the American Chemical Society, 2002, 124, 11562-11563.	6.6	359
207	Raft Polymerization ofN,N-Dimethylacrylamide Utilizing Novel Chain Transfer Agents Tailored for High Reinitiation Efficiency and Structural Controlâ€. Macromolecules, 2002, 35, 4123-4132.	2.2	176
208	Water-Soluble Polymers. 84. Controlled Polymerization in Aqueous Media of Anionic Acrylamido Monomers via RAFT. Macromolecules, 2001, 34, 6561-6564.	2.2	158