Philipp Oberdoerffer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3585039/publications.pdf

Version: 2024-02-01

28 papers 2,569 citations

20 h-index 27 g-index

30 all docs 30 docs citations

30 times ranked

4561 citing authors

#	Article	IF	CITATIONS
1	SIRT1 Redistribution on Chromatin Promotes Genomic Stability but Alters Gene Expression during Aging. Cell, 2008, 135, 907-918.	28.9	756
2	The Human Tumor Atlas Network: Charting Tumor Transitions across Space and Time at Single-Cell Resolution. Cell, 2020, 181, 236-249.	28.9	334
3	The role of nuclear architecture in genomic instability and ageing. Nature Reviews Molecular Cell Biology, 2007, 8, 692-702.	37.0	256
4	A Macrohistone Variant Links Dynamic Chromatin Compaction to BRCA1-Dependent Genome Maintenance. Cell Reports, 2014, 8, 1049-1062.	6.4	179
5	A <scp>BRCA</scp> 1â€interacting lnc <scp>RNA</scp> regulates homologous recombination. EMBO Reports, 2015, 16, 1520-1534.	4.5	126
6	Sirt1 ablation promotes stress-induced loss of epigenetic and genomic hematopoietic stem and progenitor cell maintenance. Journal of Experimental Medicine, 2013, 210, 987-1001.	8.5	104
7	The ageing epigenome: Damaged beyond repair?. Ageing Research Reviews, 2009, 8, 189-198.	10.9	77
8	Replication Stress Shapes a Protective Chromatin Environment across Fragile Genomic Regions. Molecular Cell, 2018, 69, 36-47.e7.	9.7	75
9	Efficiency of RNA Interference in the Mouse Hematopoietic System Varies between Cell Types and Developmental Stages. Molecular and Cellular Biology, 2005, 25, 3896-3905.	2.3	68
10	SIRT1 Activation Disrupts Maintenance of Myelodysplastic Syndrome Stem and Progenitor Cells by Restoring TET2 Function. Cell Stem Cell, 2018, 23, 355-369.e9.	11.1	68
11	Unidirectional Cre-mediated genetic inversion in mice using the mutant loxP pair lox66/lox71. Nucleic Acids Research, 2003, 31, 140e-140.	14.5	62
12	Chromatin dynamics in DNA double-strand break repair. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2012, 1819, 811-819.	1.9	56
13	DNA damage, chromatin, and transcription: the trinity of aging. Current Opinion in Cell Biology, 2012, 24, 724-730.	5 . 4	49
14	Controlled DNA double-strand break induction in mice reveals post-damage transcriptome stability. Nucleic Acids Research, 2016, 44, e64-e64.	14. 5	44
15	Ubiquitin-specific protease 21 stabilizes BRCA2 to control DNA repair and tumor growth. Nature Communications, 2017, 8, 137.	12.8	44
16	RNA: a double-edged sword in genome maintenance. Nature Reviews Genetics, 2020, 21, 651-670.	16.3	37
17	The macroH2A1.2 histone variant links ATRX loss to alternative telomere lengthening. Nature Structural and Molecular Biology, 2019, 26, 213-219.	8.2	36
18	Replication Stress: A Lifetime of Epigenetic Change. Genes, 2015, 6, 858-877.	2.4	28

#	Article	IF	CITATION
19	Epigenetic Regulation of DNA Repair Pathway Choice by MacroH2A1 Splice Variants Ensures Genome Stability. Molecular Cell, 2020, 79, 836-845.e7.	9.7	25
20	Histone H2A variants: Diversifying chromatin to ensure genome integrity. Seminars in Cell and Developmental Biology, 2023, 135, 59-72.	5.0	23
21	Transcription-associated events affecting genomic integrity. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160288.	4.0	22
22	Metabolic modulation of chromatin: implications for DNA repair and genomic integrity. Frontiers in Genetics, 2013, 4, 182.	2.3	21
23	Expression of a Targeted λ1 Light Chain Gene Is Developmentally Regulated and Independent of Igκ Rearrangements. Journal of Experimental Medicine, 2003, 197, 1165-1172.	8.5	20
24	The histone variant macroH2A1 is a splicing-modulated caretaker of genome integrity and tumor growth. Molecular and Cellular Oncology, 2018, 5, e1441629.	0.7	14
25	An age of fewer histones. Nature Cell Biology, 2010, 12, 1029-1031.	10.3	13
26	Encounters in Three Dimensions: How Nuclear Topology Shapes Genome Integrity. Frontiers in Genetics, 2021, 12, 746380.	2.3	4
27	Stop relaxing: How DNA damage-induced chromatin compaction may affect epigenetic integrity and disease. Molecular and Cellular Oncology, 2015, 2, e970952.	0.7	3
28	TET2 Activity Is Modulated By SIRT1-Mediated Protein Deacetylation: A Potential Therapeutic Target in Myelodysplastic Syndrome, Blood, 2016, 128, 1053-1053.	1.4	0