
Mikkel BregnhÃ,j

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/358248/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular Oxygen in Photoresponsive Organic Materials. , 2022, , 121-148.		4
2	Electrostatics Trigger Interfacial Self-Assembly of Bacterial Ice Nucleators. Biomacromolecules, 2022, 23, 505-512.	5.4	7
3	Tutorials in vibrational sum frequency generation spectroscopy. I. The foundations. Biointerphases, 2022, 17, 011201.	1.6	17
4	Tutorials in vibrational sum frequency generation spectroscopy. II. Designing a broadband vibrational sum frequency generation spectrometer. Biointerphases, 2022, 17, 011202.	1.6	19
5	Structure and Orientation of the SARS-Coronavirus-2 Spike Protein at Air–Water Interfaces. Journal of Physical Chemistry B, 2022, 126, 3425-3430.	2.6	3
6	X ³ Σ _g [–] → b ¹ Σ _g ⁺ Absorption Spectra of Molecular Oxygen in Liquid Organic Solvents at Atmospheric Pressure. Journal of Physical Chemistry A, 2022, 126, 3839-3845.	2.5	5
7	The Diatom Peptide R5 Fabricates Two-Dimensional Titanium Dioxide Nanosheets. Journal of Physical Chemistry Letters, 2022, 13, 5025-5029.	4.6	2
8	Synergistic effect of carotenoid and silicone-based additives for photooxidatively stable organic solar cells with enhanced elasticity. Journal of Materials Chemistry C, 2021, 9, 11838-11850.	5.5	7
9	The primary photo-dissociation dynamics of lactate in aqueous solution: decarboxylation prevents dehydroxylation. Physical Chemistry Chemical Physics, 2021, 23, 4555-4568.	2.8	8
10	Ice-nucleating proteins are activated by low temperatures to control the structure of interfacial water. Nature Communications, 2021, 12, 1183.	12.8	40
11	Photophysics of a protein-bound derivative of malachite green that sensitizes the production of singlet oxygen. Photochemical and Photobiological Sciences, 2021, 20, 435-449.	2.9	5
12	A liquid surface height controller for surface spectroscopy. Review of Scientific Instruments, 2021, 92, 094104.	1.3	3
13	Assembly of iron oxide nanosheets at the air–water interface by leucine–histidine peptides. RSC Advances, 2021, 11, 27965-27968.	3.6	3
14	Oxygen-dependent photophysics and photochemistry of prototypical compounds for organic photovoltaics: inhibiting degradation initiated by singlet oxygen at a molecular level. Methods and Applications in Fluorescence, 2020, 8, 014001.	2.3	22
15	Light-initiated oxidative stress. , 2020, , 363-388.		6
16	Oxygen- and pH-Dependent Photophysics of Fluorinated Fluorescein Derivatives: Non-Symmetrical vs. Symmetrical Fluorination. Sensors, 2020, 20, 5172.	3.8	6
17	Uric Acid: A Lessâ€thanâ€Perfect Probe for Singlet Oxygen. Photochemistry and Photobiology, 2019, 95, 202-210.	2.5	16
18	Two-Photon Excitation of Neat Aerated Solvents with Visible Light Produces Singlet Oxygen. Journal of Physical Chemistry A, 2019, 123, 7567-7575.	2.5	6

Mikkel BregnhÃj

#	Article	IF	CITATIONS
19	Biomimetic Approach to Inhibition of Photooxidation in Organic Solar Cells Using Beta-Carotene as an Additive. ACS Applied Materials & Interfaces, 2019, 11, 41570-41579.	8.0	34
20	Comment on "Bi-functional Li ₂ B ₁₂ H ₁₂ for energy storage and conversion applications: solid-state electrolyte and luminescent down-conversion dye―by J. A. Teprovich Jr, H. Colón-Mercado, A. L. Washington II, P. A. Ward, S. Greenway, D. M. Missimer, H. Hartman, J. Velten, J. H. Christian and R. Zidan, <i>J. Mater. Chem. A</i> , 2015, 3 , 22853. Journal of Materials Chemistry A, 2019, 7, 4185-4187.	10.3	7
21	Tungsten lodide Clusters as Singlet Oxygen Photosensitizers: Exploring the Domain of Resonant Energy Transfer at 1 eV. Journal of Physical Chemistry A, 2019, 123, 1730-1739.	2.5	11
22	Single mutation in a novel bacterial LOV protein yields a singlet oxygen generator. Photochemical and Photobiological Sciences, 2019, 18, 2657-2660.	2.9	14
23	$\label{eq: Direct } ext{O}_{2} (\{ext{X}}^{3}Sigma_{ext{g}}^{-}) o \{ext{O}}_{2} (\{ext{b}}^{1}) Tj ETQq1 1 0.78431 + 0.78441 +$	4 rgBT /O	verlock 10 Tf
24	Temperature Effects on the Lifetime of O2(a1î"g). Springer Theses, 2019, , 79-105.	0.1	0
25	Instrumentation and Experimental Techniques. Springer Theses, 2019, , 17-29.	0.1	0
26	Solvent Effects on the O2(a1â^†g) → O2(b1\$\$Sigma_{ext{g}}^{ + }\$\$) Transition. Springer Theses, 2019, , 57-78.	0.1	0
27	Light Scattering versus Plasmon Effects: Optical Transitions in Molecular Oxygen near a Metal Nanoparticle. Journal of Physical Chemistry C, 2018, 122, 15625-15634.	3.1	16
28	Azadioxatriangulenium and Diazaoxatriangulenium: Quantum Yields and Fundamental Photophysical Properties. ACS Omega, 2017, 2, 193-203.	3.5	29
29	Temperature Sensitive Singlet Oxygen Photosensitization by LOV-Derived Fluorescent Flavoproteins. Journal of Physical Chemistry B, 2017, 121, 2561-2574.	2.6	38
30	Monitoring Interfacial Lipid Oxidation in Oil-in-Water Emulsions Using Spatially Resolved Optical Techniques. Analytical Chemistry, 2017, 89, 6239-6247.	6.5	21
31	No Photon Wasted: An Efficient and Selective Singlet Oxygen Photosensitizing Protein. Journal of Physical Chemistry B, 2017, 121, 9366-9371.	2.6	68
32	Singlet Oxygen Photophysics in Liquid Solvents: Converging on a Unified Picture. Accounts of Chemical Research, 2017, 50, 1920-1927.	15.6	97
33	Exerting better control and specificity with singlet oxygen experiments in live mammalian cells. Methods, 2016, 109, 81-91.	3.8	26
34	Solvent and Heavy-Atom Effects on the O ₂ (X ³ Σ _g [–]) → O ₂ (b ¹ Σ _g ⁺) Absorption Transition. Journal of Physical Chemistry A, 2016, 120, 8285-8296.	2.5	34
35	Solvent-dependent singlet oxygen lifetimes: temperature effects implicate tunneling and charge-transfer interactions. Physical Chemistry Chemical Physics, 2016, 18, 22946-22961.	2.8	174
36	Intracellular singlet oxygen photosensitizers: on the road to solving the problems of sensitizer degradation, bleaching and relocalization. Integrative Biology (United Kingdom), 2016, 8, 177-193.	1.3	29

Mikkel BregnhÃj

#	Article	IF	CITATIONS
37	Control of singlet oxygen production in experiments performed on single mammalian cells. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 321, 297-308.	3.9	37
38	Effect of Solvent on the O2(a1î"g) → O2(b1î£g+) Absorption Coefficient. Journal of Physical Chemistry A, 2015, 119, 9236-9243.	2.5	11
39	Subtle structural changes in octupolar merocyanine dyes influence the photosensitized production of singlet oxygen. Photochemical and Photobiological Sciences, 2015, 14, 1138-1146.	2.9	4
40	Direct 765 nm Optical Excitation of Molecular Oxygen in Solution and in Single Mammalian Cells. Journal of Physical Chemistry B, 2015, 119, 5422-5429.	2.6	65
41	Naturally occurring antioxidants for photooxidatively stable flexible organic solar cells. , 0, , .		0