Ikuhiko Nakase

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3581283/publications.pdf

Version: 2024-02-01

48 papers 4,270 citations

201674 27 h-index 214800 47 g-index

48 all docs

48 docs citations

48 times ranked

4747 citing authors

#	Article	IF	CITATIONS
1	Cellular Uptake of Arginine-Rich Peptides: Roles for Macropinocytosis and Actin Rearrangement. Molecular Therapy, 2004, 10, 1011-1022.	8.2	688
2	Interaction of Arginine-Rich Peptides with Membrane-Associated Proteoglycans Is Crucial for Induction of Actin Organization and Macropinocytosisâ€. Biochemistry, 2007, 46, 492-501.	2.5	364
3	Cellular Internalization and Distribution of Arginine-Rich Peptides as a Function of Extracellular Peptide Concentration, Serum, and Plasma Membrane Associated Proteoglycans. Bioconjugate Chemistry, 2008, 19, 656-664.	3.6	289
4	Cytosolic antibody delivery by lipid-sensitive endosomolytic peptide. Nature Chemistry, 2017, 9, 751-761.	13.6	271
5	Transferrin-Modified Liposomes Equipped with a pH-Sensitive Fusogenic Peptide:  An Artificial Viral-like Delivery System. Biochemistry, 2004, 43, 5618-5628.	2.5	268
6	Active macropinocytosis induction by stimulation of epidermal growth factor receptor and oncogenic Ras expression potentiates cellular uptake efficacy of exosomes. Scientific Reports, 2015, 5, 10300.	3.3	214
7	Combined treatment with a pH-sensitive fusogenic peptide and cationic lipids achieves enhanced cytosolic delivery of exosomes. Scientific Reports, 2015, 5, 10112.	3.3	210
8	Arginine-rich peptides and their internalization mechanisms. Biochemical Society Transactions, 2007, 35, 784-787.	3.4	207
9	Cell-Surface Interactions on Arginine-Rich Cell-Penetrating Peptides Allow for Multiplex Modes of Internalization. Accounts of Chemical Research, 2017, 50, 2449-2456.	15.6	185
10	Accumulation of arginine-rich cell-penetrating peptides in tumors and the potential for anticancer drug delivery in vivo. Journal of Controlled Release, 2012, 159, 181-188.	9.9	131
11	Arginine-rich cell-penetrating peptide-modified extracellular vesicles for active macropinocytosis induction and efficient intracellular delivery. Scientific Reports, 2017, 7, 1991.	3.3	130
12	Syndecan-4 Is a Receptor for Clathrin-Mediated Endocytosis of Arginine-Rich Cell-Penetrating Peptides. Bioconjugate Chemistry, 2016, 27, 1119-1130.	3.6	112
13	CXCR4 Stimulates Macropinocytosis: Implications for Cellular Uptake of Arginine-Rich Cell-Penetrating Peptides and HIV. Chemistry and Biology, 2012, 19, 1437-1446.	6.0	103
14	Cell-surface Accumulation of Flock House Virus-derived Peptide Leads to Efficient Internalization via Macropinocytosis. Molecular Therapy, 2009, 17, 1868-1876.	8.2	100
15	Effects of Na+/H+ exchanger inhibitors on subcellular localisation of endocytic organelles and intracellular dynamics of protein transduction domains HIV–TAT peptide and octaarginine. Journal of Controlled Release, 2006, 116, 247-254.	9.9	90
16	Cell-penetrating peptides (CPPs) as a vector for the delivery of siRNAs into cells. Molecular BioSystems, 2013, 9, 855.	2.9	89
17	Cytosolic Targeting of Macromolecules Using a pH-Dependent Fusogenic Peptide in Combination with Cationic Liposomes. Bioconjugate Chemistry, 2009, 20, 953-959.	3.6	81
18	Vectorization of biomacromolecules into cells using extracellular vesicles with enhanced internalization induced by macropinocytosis. Scientific Reports, 2016, 6, 34937.	3.3	69

#	Article	IF	Citations
19	Effect of the Attachment of a Penetration Accelerating Sequence and the Influence of Hydrophobicity on Octaarginine-Mediated Intracellular Delivery. Molecular Pharmaceutics, 2012, 9, 1222-1230.	4.6	66
20	Plant Ribosome-Inactivating Proteins: Progesses, Challenges and Biotechnological Applications (and a) Tj ETQqC	0 0 g.rgBT /	Overlock 10
21	Acid wash in determining cellular uptake of Fab/cell-permeating peptide conjugates. Biopolymers, 2007, 88, 98-107.	2.4	50
22	Transformation of an antimicrobial peptide into a plasma membrane-permeable, mitochondria-targeted peptide via the substitution of lysine with arginine. Chemical Communications, 2012, 48, 11097.	4.1	45
23	Intracellular target delivery of cell-penetrating peptide-conjugated dodecaborate for boron neutron capture therapy (BNCT). Chemical Communications, 2019, 55, 13955-13958.	4.1	44
24	Receptor clustering and activation by multivalent interaction through recognition peptides presented on exosomes. Chemical Communications, 2017, 53, 317-320.	4.1	41
25	Signal Transduction Using an Artificial Receptor System that Undergoes Dimerization Upon Addition of a Bivalent Leucineâ€Zipper Ligand. Angewandte Chemie - International Edition, 2012, 51, 7464-7467.	13.8	39
26	Molecular interplays involved in the cellular uptake of octaarginine on cell surfaces and the importance of syndecan-4 cytoplasmic V domain for the activation of protein kinase $\hat{\text{Cl}}\pm$. Biochemical and Biophysical Research Communications, 2014, 446, 857-862.	2.1	35
27	Effects of gefitinib treatment on cellular uptake of extracellular vesicles in EGFR-mutant non-small cell lung cancer cells. International Journal of Pharmaceutics, 2019, 572, 118762.	5.2	30
28	Modular Redesign of a Cationic Lytic Peptide To Promote the Endosomal Escape of Biomacromolecules. Angewandte Chemie - International Edition, 2018, 57, 12771-12774.	13.8	28
29	Antibody-Based Receptor Targeting Using an Fc-Binding Peptide-Dodecaborate Conjugate and Macropinocytosis Induction for Boron Neutron Capture Therapy. ACS Omega, 2020, 5, 22731-22738.	3.5	25
30	Zinc and its transporter ZIP6 are key mediators of breast cancer cell survival under high glucose conditions. FEBS Letters, 2017, 591, 3348-3359.	2.8	24
31	Environmental pH stress influences cellular secretion and uptake of extracellular vesicles. FEBS Open Bio, 2021, 11, 753-767.	2.3	23
32	Biofunctional Peptide-Modified Extracellular Vesicles Enable Effective Intracellular Delivery via the Induction of Macropinocytosis. Processes, 2021, 9, 224.	2.8	19
33	Hydrogen sulfide donor micelles protect cardiomyocytes from ischemic cell death. Molecular BioSystems, 2017, 13, 1705-1708.	2.9	18
34	Effects of Lyophilization of Arginine-rich Cell-penetrating Peptide-modified Extracellular Vesicles on Intracellular Delivery. Anticancer Research, 2019, 39, 6701-6709.	1.1	17
35	Dodecaborate-Encapsulated Extracellular Vesicles with Modification of Cell-Penetrating Peptides for Enhancing Macropinocytotic Cellular Uptake and Biological Activity in Boron Neutron Capture Therapy. Molecular Pharmaceutics, 2022, 19, 1135-1145.	4.6	16
36	Macropinocytosis-Inducible Extracellular Vesicles Modified with Antimicrobial Protein CAP18-Derived Cell-Penetrating Peptides for Efficient Intracellular Delivery. Molecular Pharmaceutics, 2021, 18, 3290-3301.	4.6	15

#	Article	lF	CITATIONS
37	Epidermal growth factor induced macropinocytosis directs branch formation of lung epithelial cells. Biochemical and Biophysical Research Communications, 2018, 507, 297-303.	2.1	12
38	Optimization of the method for analyzing endocytosis of fluorescently tagged molecules: Impact of incubation in the cell culture medium and cell surface wash with glycine-hydrochloric acid buffer. Journal of Controlled Release, 2019, 310, 127-140.	9.9	11
39	Conversion of cationic amphiphilic lytic peptides to cellâ€penetration peptides. Peptide Science, 2020, 112, e24144.	1.8	11
40	Exosomes: Breast cancer-derived extracellular vesicles; recent key findings and technologies in disease progression, diagnostics, and cancer targeting. Drug Metabolism and Pharmacokinetics, 2022, 42, 100435.	2.2	10
41	Association of Hydrophobic Carboxyl-Terminal Dendrimers with Lymph Node-Resident Lymphocytes. Polymers, 2020, 12, 1474.	4.5	8
42	Peptides with the multibasic cleavage site of the hemagglutinin from highly pathogenic influenza viruses act as cell-penetrating via binding to heparan sulfate and neuropilins. Biochemical and Biophysical Research Communications, 2019, 512, 453-459.	2.1	6
43	Hypoxia enhances motility and EMT through the Na+/H+ exchanger NHE-1 in MDA-MB-231 breast cancer cells. Experimental Cell Research, 2022, 412, 113006.	2.6	6
44	Stearylated Macropinocytosis-Inducing Peptides Facilitating the Cellular Uptake of Small Extracellular Vesicles. Bioconjugate Chemistry, 2022, 33, 869-880.	3.6	6
45	Modular Redesign of a Cationic Lytic Peptide To Promote the Endosomal Escape of Biomacromolecules. Angewandte Chemie, 2018, 130, 12953-12956.	2.0	5
46	Gefitinib Enhances Mitochondrial Biological Functions in NSCLCs with EGFR Mutations at a High Cell Density. Anticancer Research, 2017, 37, 4779-4788.	1.1	5
47	Carboxy-terminal dendrimers with phenylalanine for a pH-sensitive delivery system into immune cells including T cells. Journal of Materials Chemistry B, 2022, 10, 2463-2470.	5.8	3
48	Intracellular delivery system based on biofunctional peptide-modified exosomes. Drug Delivery System, 2020, 35, 47-56.	0.0	0