
Desiree Bonci

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3579468/publications.pdf Version: 2024-02-01

DESIDEE RONCI

#	Article	IF	CITATIONS
1	MicroRNA-133 controls cardiac hypertrophy. Nature Medicine, 2007, 13, 613-618.	30.7	1,652
2	The miR-15a–miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nature Medicine, 2008, 14, 1271-1277.	30.7	919
3	MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 18081-18086.	7.1	747
4	Deregulation of microRNA-503 Contributes to Diabetes Mellitus–Induced Impairment of Endothelial Function and Reparative Angiogenesis After Limb Ischemia. Circulation, 2011, 123, 282-291.	1.6	374
5	Negative regulation of erythropoiesis by caspase-mediated cleavage of GATA-1. Nature, 1999, 401, 489-493.	27.8	369
6	Control of tumor and microenvironment cross-talk by miR-15a and miR-16 in prostate cancer. Oncogene, 2011, 30, 4231-4242.	5.9	221
7	The Inhibition of the Highly Expressed Mir-221 and Mir-222 Impairs the Growth of Prostate Carcinoma Xenografts in Mice. PLoS ONE, 2008, 3, e4029.	2.5	219
8	MicroRNAs and prostate cancer. Endocrine-Related Cancer, 2010, 17, F1-F17.	3.1	139
9	A microRNA code for prostate cancer metastasis. Oncogene, 2016, 35, 1180-1192.	5.9	115
10	â€~Advanced' generation lentiviruses as efficient vectors for cardiomyocyte gene transduction in vitro and in vivo. Gene Therapy, 2003, 10, 630-636.	4.5	109
11	Heart infarct in NODâ€SCID mice: Therapeutic vasculogenesis by transplantation of human CD34 + cells and low dose CD34 + KDR + cells. FASEB Journal, 2004, 18, 1392-1394.	0.5	107
12	Organoids as a new model for improving regenerative medicine and cancer personalized therapy in renal diseases. Cell Death and Disease, 2019, 10, 201.	6.3	105
13	Absence of Caspase 8 and High Expression of PED Protect Primitive Neural Cells from Cell Death. Journal of Experimental Medicine, 2004, 200, 1257-1266.	8.5	101
14	Akt regulates L-type Ca2+ channel activity by modulating Cavα1 protein stability. Journal of Cell Biology, 2009, 184, 923-933.	5.2	101
15	BTG2 loss and miR-21 upregulation contribute to prostate cell transformation by inducing luminal markers expression and epithelial–mesenchymal transition. Oncogene, 2013, 32, 1843-1853.	5.9	94
16	Systemic in vivo lentiviral delivery of miR-15a/16 reduces malignancy in the NZB de novo mouse model of chronic lymphocytic leukemia. Genes and Immunity, 2012, 13, 109-119.	4.1	70
17	MicroRNA-21 as Therapeutic Target in Cancer and Cardiovascular Disease. Recent Patents on Cardiovascular Drug Discovery, 2010, 5, 156-161.	1.5	47
18	MicroRNA as New Tools for Prostate Cancer Risk Assessment and Therapeutic Intervention: Results from Clinical Data Set and Patients' Samples. BioMed Research International, 2014, 2014, 1-17.	1.9	46

DESIREE BONCI

1

#	Article	IF	CITATIONS
19	Formation of PML/RARα high molecular weight nuclear complexes through the PML coiled-coil region is essential for the PML/RARα-mediated retinoic acid response. Oncogene, 1999, 18, 6313-6321.	5.9	40
20	A lentiviral vector with a short troponin-l promoter for tracking cardiomyocyte differentiation of human embryonic stem cells. Gene Therapy, 2008, 15, 161-170.	4.5	35
21	MicroRNAs and Prostate Cancer. Cancer Journal (Sudbury, Mass), 2012, 18, 253-261.	2.0	35
22	C-Met/miR-130b axis as novel mechanism and biomarker for castration resistance state acquisition. Oncogene, 2017, 36, 3718-3728.	5.9	35
23	The Double Face of Exosome-Carried MicroRNAs in Cancer Immunomodulation. International Journal of Molecular Sciences, 2018, 19, 1183.	4.1	30
24	Lentiviral Transduction of Human Postnatal Skeletal (Stromal, Mesenchymal) Stem Cells: In Vivo Transplantation and Gene Silencing. Calcified Tissue International, 2006, 78, 372-384.	3.1	29
25	Potential role of APRIL as autocrine growth factor for megakaryocytopoiesis. Blood, 2004, 104, 3169-3172.	1.4	27
26	Enforced expression of KDR receptor promotes proliferation, survival and megakaryocytic differentiation of TF1 progenitor cell line. Cell Death and Differentiation, 2006, 13, 61-74.	11.2	24
27	Diagnostic and prognostic potential of the proteomic profiling of serum-derived extracellular vesicles in prostate cancer. Cell Death and Disease, 2021, 12, 636.	6.3	20
28	Renal cancer: new models and approach for personalizing therapy. Journal of Experimental and Clinical Cancer Research, 2018, 37, 217.	8.6	17
29	miR-15/miR-16 loss, miR-21 upregulation, or deregulation of their target genes predicts poor prognosis in prostate cancer patients. Molecular and Cellular Oncology, 2016, 3, e1109744.	0.7	14
30	Blocking the APRIL circuit enhances acute myeloid leukemia cell chemosensitivity. Haematologica, 2008, 93, 1899-1902.	3.5	7
31	Functional Role of MicroRNAs in Prostate Cancer and Therapeutic Opportunities. Critical Reviews in Oncogenesis, 2013, 18, 303-316.	0.4	5
32	A predictive signature for therapy assignment and risk assessment in prostate cancer. Oncoscience, 2015, 2, 920-923.	2.2	5
33	THE MIR-15A/MIR-16-1 CLUSTER CONTROLS PROSTATE CANCER PROGRESSION CONTROL BY TARGETING OF MULTIPLE ONCOGENIC ACTIVITIES. Journal of Urology, 2009, 181, 188-188.	0.4	3
34	Manipulating the Cell Differentiation Through Lentiviral Vectors. Methods in Molecular Biology, 2010, 614, 149-160.	0.9	3
35	Green fluorescent protein incorporation by mouse myoblasts may yield false evidence of myogenic differentiation of human haematopoietic stem cells. Acta Physiologica, 2008, 193, 249-256.	3.8	2

#	Article	IF	CITATIONS
37	A tight junction between E-Cadherin and the prostate tumor suppressor SPDEF. Asian Journal of Andrology, 2013, 15, 449-450.	1.6	1
38	Abstract 4045: Restoring miR-15a/16 in the NZB mouse model of chronic lymphocytic leukemia reduces disease and enhances drug sensitivity. , 2010, , .		0
39	Abstract LB-040: Establishment of a predictive patient-derived xenograft model for renal cell carcinoma. , 2016, , .		0