Bram J J Slagmolen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3578907/publications.pdf Version: 2024-02-01

		5248	1216
237	54,673	83	227
papers	citations	h-index	g-index
241	241	241	18238
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 2016, 116, 061102.	2.9	8,753
2	GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters, 2017, 119, 161101.	2.9	6,413
3	Multi-messenger Observations of a Binary Neutron Star Merger [*] . Astrophysical Journal Letters, 2017, 848, L12.	3.0	2,805
4	GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Physical Review Letters, 2016, 116, 241103.	2.9	2,701
5	Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophysical Journal Letters, 2017, 848, L13.	3.0	2,314
6	GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Physical Review Letters, 2017, 118, 221101.	2.9	1,987
7	Advanced LIGO. Classical and Quantum Gravity, 2015, 32, 074001.	1.5	1,929
8	GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Physical Review Letters, 2017, 119, 141101.	2.9	1,600
9	GW170817: Measurements of Neutron Star Radii and Equation of State. Physical Review Letters, 2018, 121, 161101.	2.9	1,473
10	Tests of General Relativity with GW150914. Physical Review Letters, 2016, 116, 221101.	2.9	1,224
11	Characterization of the LIGO detectors during their sixth science run. Classical and Quantum Gravity, 2015, 32, 115012.	1.5	1,029
12	GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence. Astrophysical Journal Letters, 2017, 851, L35.	3.0	968
13	Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors. Classical and Quantum Gravity, 2010, 27, 173001.	1.5	956
14	Binary Black Hole Mergers in the First Advanced LIGO Observing Run. Physical Review X, 2016, 6, .	2.8	898
15	Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nature Photonics, 2013, 7, 613-619.	15.6	825
16	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	8.2	808
17	Exploring the sensitivity of next generation gravitational wave detectors. Classical and Quantum Gravity, 2017, 34, 044001.	1.5	735
18	A gravitational wave observatory operating beyond the quantum shot-noise limit. Nature Physics, 2011, 7, 962-965.	6.5	716

#	Article	IF	CITATIONS
19	A gravitational-wave standard siren measurement of the Hubble constant. Nature, 2017, 551, 85-88.	13.7	674
20	Properties of the Binary Black Hole Merger GW150914. Physical Review Letters, 2016, 116, 241102.	2.9	673
21	ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914. Astrophysical Journal Letters, 2016, 818, L22.	3.0	633
22	GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. Physical Review Letters, 2016, 116, 131103.	2.9	466
23	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	8.2	447
24	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living Reviews in Relativity, 2016, 19, 1.	8.2	427
25	Quantum-Enhanced Advanced LIGO Detectors in the Era of Gravitational-Wave Astronomy. Physical Review Letters, 2019, 123, 231107.	2.9	359
26	GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. Physical Review D, 2016, 93, .	1.6	315
27	An upper limit on the stochastic gravitational-wave background of cosmological origin. Nature, 2009, 460, 990-994.	13.7	303
28	Sensitivity of the Advanced LIGO detectors at the beginning of gravitational wave astronomy. Physical Review D, 2016, 93, .	1.6	286
29	GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes. Physical Review Letters, 2016, 116, 131102.	2.9	269
30	THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914. Astrophysical Journal Letters, 2016, 833, L1.	3.0	230
31	Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 2016, 33, 134001.	1.5	225
32	LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914. Astrophysical Journal Letters, 2016, 826, L13.	3.0	210
33	Sensitivity and performance of the Advanced LIGO detectors in the third observing run. Physical Review D, 2020, 102, .	1.6	196
34	Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121101.	2.9	194
35	Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 851, L16.	3.0	189
36	Search for gravitational waves from low mass compact binary coalescence in LIGO's sixth science run and Virgo's science runs 2 and 3. Physical Review D, 2012, 85, .	1.6	185

#	Article	IF	CITATIONS
37	GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences. Physical Review Letters, 2018, 120, 091101.	2.9	166
38	Beating the Spin-Down Limit on Gravitational Wave Emission from the Crab Pulsar. Astrophysical Journal, 2008, 683, L45-L49.	1.6	160
39	Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated withÂGW170817. Astrophysical Journal Letters, 2017, 850, L39.	3.0	156
40	SEARCHES FOR GRAVITATIONAL WAVES FROM KNOWN PULSARS WITH SCIENCE RUN 5 LIGO DATA. Astrophysical Journal, 2010, 713, 671-685.	1.6	155
41	UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR–BLACK HOLE MERGERS FROM ADVANCED LIGO'S FIRST OBSERVING RUN. Astrophysical Journal Letters, 2016, 832, L21.	3.0	146
42	A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 2021, 909, 218.	1.6	144
43	Implications for the Origin of GRB 070201 from LIGO Observations. Astrophysical Journal, 2008, 681, 1419-1430.	1.6	143
44	Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory. Astrophysical Journal Letters, 2017, 850, L35.	3.0	135
45	Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network. Physical Review D, 2013, 88, .	1.6	132
46	First Search for Gravitational Waves from Known Pulsars with Advanced LIGO. Astrophysical Journal, 2017, 839, 12.	1.6	131
47	Searches for periodic gravitational waves from unknown isolated sources and Scorpius X-1: Results from the second LIGO science run. Physical Review D, 2007, 76, .	1.6	128
48	LIGO detector characterization in the second and third observing runs. Classical and Quantum Gravity, 2021, 38, 135014.	1.5	128
49	Search for gravitational waves from binary inspirals in S3 and S4 LIGO data. Physical Review D, 2008, 77, .	1.6	126
50	GRAVITATIONAL WAVES FROM KNOWN PULSARS: RESULTS FROM THE INITIAL DETECTOR ERA. Astrophysical Journal, 2014, 785, 119.	1.6	125
51	Observation of a kilogram-scale oscillator near its quantum ground state. New Journal of Physics, 2009, 11, 073032.	1.2	123
52	Upper limits on gravitational wave emission from 78 radio pulsars. Physical Review D, 2007, 76, .	1.6	121
53	Searching for a Stochastic Background of Gravitational Waves with the Laser Interferometer Gravitational-Wave Observatory. Astrophysical Journal, 2007, 659, 918-930.	1.6	120
54	Search for gravitational waves from low mass binary coalescences in the first year of LIGO's S5 data. Physical Review D, 2009, 79, .	1.6	120

#	Article	IF	CITATIONS
55	Calibration of the LIGO gravitational wave detectors in the fifth science run. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 624, 223-240.	0.7	120
56	Observing gravitational-wave transient GW150914 with minimal assumptions. Physical Review D, 2016, 93, .	1.6	119
57	Neutron Star Extreme Matter Observatory: A kilohertz-band gravitational-wave detector in the global network. Publications of the Astronomical Society of Australia, 2020, 37, .	1.3	114
58	Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1. Physical Review D, 2010, 82, .	1.6	111
59	All-sky search for periodic gravitational waves in LIGO S4 data. Physical Review D, 2008, 77, .	1.6	110
60	High performance vibration isolation using springs in Euler column buckling mode. Physics Letters, Section A: General, Atomic and Solid State Physics, 2002, 300, 122-130.	0.9	109
61	All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run. Physical Review D, 2010, 81, .	1.6	107
62	All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run. Physical Review D, 2012, 85, .	1.6	107
63	Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model. Physical Review X, 2016, 6, .	2.8	106
64	Search for gravitational waves from low mass compact binary coalescence in 186 days of LIGO's fifth science run. Physical Review D, 2009, 80, .	1.6	105
65	FIRST SEARCH FOR GRAVITATIONAL WAVES FROM THE YOUNGEST KNOWN NEUTRON STAR. Astrophysical Journal, 2010, 722, 1504-1513.	1.6	104
66	SEARCH FOR GRAVITATIONAL WAVES ASSOCIATED WITH GAMMA-RAY BURSTS DURING LIGO SCIENCE RUN 6 AND VIRGO SCIENCE RUNS 2 AND 3. Astrophysical Journal, 2012, 760, 12.	1.6	104
67	Identification and mitigation of narrow spectral artifacts that degrade searches for persistent gravitational waves in the first two observing runs of Advanced LIGO. Physical Review D, 2018, 97, .	1.6	104
68	Directly comparing GW150914 with numerical solutions of Einstein's equations for binary black hole coalescence. Physical Review D, 2016, 94, .	1.6	102
69	Effects of waveform model systematics on the interpretation of GW150914. Classical and Quantum Gravity, 2017, 34, 104002.	1.5	98
70	Directional Limits on Persistent Gravitational Waves Using LIGO S5 Science Data. Physical Review Letters, 2011, 107, 271102.	2.9	94
71	Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGO's first observing run. Classical and Quantum Gravity, 2018, 35, 065010.	1.5	94
72	Search for gravitational waves from binary black hole inspiral, merger, and ringdown in LIGO-Virgo data from 2009–2010. Physical Review D, 2013, 87, .	1.6	92

#	Article	IF	CITATIONS
73	High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube. Physical Review D, 2016, 93, .	1.6	92
74	DC readout experiment in Enhanced LIGO. Classical and Quantum Gravity, 2012, 29, 065005.	1.5	91
75	Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data. Physical Review D, 2013, 87, .	1.6	91
76	Upper limit map of a background of gravitational waves. Physical Review D, 2007, 76, .	1.6	90
77	SEARCH FOR GRAVITATIONAL-WAVE INSPIRAL SIGNALS ASSOCIATED WITH SHORT GAMMA-RAY BURSTS DURING LIGO'S FIFTH AND VIRGO'S FIRST SCIENCE RUN. Astrophysical Journal, 2010, 715, 1453-1461.	1.6	90
78	BEATING THE SPIN-DOWN LIMIT ON GRAVITATIONAL WAVE EMISSION FROM THE VELA PULSAR. Astrophysical Journal, 2011, 737, 93.	1.6	89
79	Constraints on cosmic strings using data from the first Advanced LIGO observing run. Physical Review D, 2018, 97, .	1.6	88
80	Improved Upper Limits on the Stochastic Gravitational-Wave Background from 2009–2010 LIGO and Virgo Data. Physical Review Letters, 2014, 113, 231101.	2.9	86
81	Search for gravitational waves from binary black hole inspiral, merger, and ringdown. Physical Review D, 2011, 83, .	1.6	85
82	Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background. Physical Review Letters, 2018, 120, 201102.	2.9	85
83	Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121102.	2.9	84
84	Implementation and testing of the first prompt search forÂgravitational wave transients with electromagnetic counterparts. Astronomy and Astrophysics, 2012, 539, A124.	2.1	84
85	All-Sky LIGO Search for Periodic Gravitational Waves in the Early Fifth-Science-Run Data. Physical Review Letters, 2009, 102, 111102.	2.9	83
86	Einstein@Home search for periodic gravitational waves in LIGO S4 data. Physical Review D, 2009, 79, .	1.6	83
87	Search for gravitational-wave bursts in the first year of the fifth LIGO science run. Physical Review D, 2009, 80, .	1.6	79
88	Search for gravitational-wave bursts in LIGO data from the fourth science run. Classical and Quantum Gravity, 2007, 24, 5343-5369.	1.5	78
89	Einstein@Home search for periodic gravitational waves in early S5 LIGO data. Physical Review D, 2009, 80, .	1.6	78
90	Search for Subsolar-Mass Ultracompact Binaries in Advanced LIGO's First Observing Run. Physical Review Letters, 2018, 121, 231103.	2.9	77

#	Article	IF	CITATIONS
91	Improving astrophysical parameter estimation via offline noise subtraction for Advanced LIGO. Physical Review D, 2019, 99, .	1.6	77
92	First low-latency LIGO+Virgo search for binary inspirals and their electromagnetic counterparts. Astronomy and Astrophysics, 2012, 541, A155.	2.1	75
93	The characterization of Virgo data and its impact on gravitational-wave searches. Classical and Quantum Gravity, 2012, 29, 155002.	1.5	73
94	Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO. Physical Review D, 2017, 96, .	1.6	73
95	On the Progenitor of Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 850, L40.	3.0	73
96	Calibration of the Advanced LIGO detectors for the discovery of the binary black-hole merger GW150914. Physical Review D, 2017, 95, .	1.6	72
97	Low-frequency terrestrial gravitational-wave detectors. Physical Review D, 2013, 88, .	1.6	70
98	Search for Gravitational-Wave Bursts from Soft Gamma Repeaters. Physical Review Letters, 2008, 101, 211102.	2.9	69
99	All-sky search for short gravitational-wave bursts in the first Advanced LIGO run. Physical Review D, 2017, 95, .	1.6	69
100	The basic physics of the binary black hole merger GW150914. Annalen Der Physik, 2017, 529, 1600209.	0.9	69
101	Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors. Physical Review Letters, 2014, 112, 131101.	2.9	68
102	First Search for Nontensorial Gravitational Waves from Known Pulsars. Physical Review Letters, 2018, 120, 031104.	2.9	68
103	All-sky search for periodic gravitational waves in the full S5 LIGO data. Physical Review D, 2012, 85, .	1.6	66
104	SEARCHES FOR CONTINUOUS GRAVITATIONAL WAVES FROM NINE YOUNG SUPERNOVA REMNANTS. Astrophysical Journal, 2015, 813, 39.	1.6	66
105	Directed search for continuous gravitational waves from the Galactic center. Physical Review D, 2013, 88, .	1.6	65
106	All-sky search for periodic gravitational waves in the O1 LIGO data. Physical Review D, 2017, 96, .	1.6	64
107	SUPPLEMENT: "THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914―(2016, ApJL, 833, L1). Astrophysical Journal, Supplement Series, 2016, 227, 14.	3.0	63
108	SWIFT FOLLOW-UP OBSERVATIONS OF CANDIDATE GRAVITATIONAL-WAVE TRANSIENT EVENTS. Astrophysical Journal, Supplement Series, 2012, 203, 28.	3.0	62

#	Article	IF	CITATIONS
109	Search for gravitational waves associated with 39 gamma-ray bursts using data from the second, third, and fourth LIGO runs. Physical Review D, 2008, 77, .	1.6	60
110	SEARCH FOR GRAVITATIONAL-WAVE BURSTS ASSOCIATED WITH GAMMA-RAY BURSTS USING DATA FROM LIGO SCIENCE RUN 5 AND VIRGO SCIENCE RUN 1. Astrophysical Journal, 2010, 715, 1438-1452.	1.6	60
111	IMPLICATIONS FOR THE ORIGIN OF GRB 051103 FROM LIGO OBSERVATIONS. Astrophysical Journal, 2012, 755, 2.	1.6	60
112	First all-sky search for continuous gravitational waves from unknown sources in binary systems. Physical Review D, 2014, 90, .	1.6	60
113	First targeted search for gravitational-wave bursts from core-collapse supernovae in data of first-generation laser interferometer detectors. Physical Review D, 2016, 94, .	1.6	60
114	First low-frequency Einstein@Home all-sky search for continuous gravitational waves in Advanced LIGO data. Physical Review D, 2017, 96, .	1.6	60
115	Search for gravitational waves from Scorpius X-1 in the first Advanced LIGO observing run with a hidden Markov model. Physical Review D, 2017, 95, .	1.6	59
116	FIRST SEARCHES FOR OPTICAL COUNTERPARTS TO GRAVITATIONAL-WAVE CANDIDATE EVENTS. Astrophysical Journal, Supplement Series, 2014, 211, 7.	3.0	57
117	SEARCH FOR GRAVITATIONAL WAVE BURSTS FROM SIX MAGNETARS. Astrophysical Journal Letters, 2011, 734, L35.	3.0	55
118	Achieving resonance in the Advanced LIGO gravitational-wave interferometer. Classical and Quantum Gravity, 2014, 31, 245010.	1.5	55
119	Search of S3 LIGO data for gravitational wave signals from spinning black hole and neutron star binary inspirals. Physical Review D, 2008, 78, .	1.6	54
120	Search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar. Physical Review D, 2011, 83, .	1.6	54
121	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. Astrophysical Journal, 2017, 841, 89.	1.6	52
122	Search for gravitational wave radiation associated with the pulsating tail of the SGR <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mn>1806</mml:mn><mml:mo>â^'</mml:mo><mml:mn>20</mml:mn></mml:math> hyper of 27 December 2004 using LIGO. Physical Review D, 2007, 76, .	flare	51
123	Search for gravitational waves from intermediate mass binary black holes. Physical Review D, 2012, 85,	1.6	48
124	Quantum squeezed light in gravitational-wave detectors. Classical and Quantum Gravity, 2014, 31, 183001.	1.5	47
125	Directed search for gravitational waves from Scorpius X-1 with initial LIGO data. Physical Review D, 2015, 91, .	1.6	47
126	First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data. Physical Review D, 2017, 96, .	1.6	47

#	Article	IF	CITATIONS
127	Picometer level displacement metrology with digitally enhanced heterodyne interferometry. Optics Express, 2009, 17, 828.	1.7	46
128	Upper Limits on Gravitational Waves from Scorpius X-1 from a Model-based Cross-correlation Search in Advanced LIGO Data. Astrophysical Journal, 2017, 847, 47.	1.6	46
129	Full band all-sky search for periodic gravitational waves in the O1 LIGO data. Physical Review D, 2018, 97, .	1.6	46
130	First LIGO search for gravitational wave bursts from cosmic (super)strings. Physical Review D, 2009, 80, .	1.6	45
131	STACKED SEARCH FOR GRAVITATIONAL WAVES FROM THE 2006 SGR 1900+14 STORM. Astrophysical Journal, 2009, 701, L68-L74.	1.6	45
132	SUPPLEMENT: "LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914―(2016, ApJL, 826, L13). Astrophysical Journal, Supplement Series, 2016, 225, 8.	3.0	44
133	LISA pathfinder appreciably constrains collapse models. Physical Review D, 2017, 95, .	1.6	44
134	Upper limits on a stochastic gravitational-wave background using LIGO and Virgo interferometers at 600–1000ÂHz. Physical Review D, 2012, 85, .	1.6	43
135	The NINJA-2 project: detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations. Classical and Quantum Gravity, 2014, 31, 115004.	1.5	42
136	Compensation of Strong Thermal Lensing in High-Optical-Power Cavities. Physical Review Letters, 2006, 96, 231101.	2.9	40
137	Search for high-energy neutrinos from gravitational wave event GW151226 and candidate LVT151012 with ANTARES and IceCube. Physical Review D, 2017, 96, .	1.6	40
138	Searching for stochastic gravitational waves using data from the two colocated LIGO Hanford detectors. Physical Review D, 2015, 91, .	1.6	39
139	Search for gravitational wave ringdowns from perturbed black holes in LIGO S4 data. Physical Review D, 2009, 80, .	1.6	38
140	Environmental noise in advanced LIGO detectors. Classical and Quantum Gravity, 2021, 38, 145001.	1.5	38
141	Narrow-band search of continuous gravitational-wave signals from Crab and Vela pulsars in Virgo VSR4 data. Physical Review D, 2015, 91, .	1.6	37
142	Broadband reduction of quantum radiation pressure noise via squeezed light injection. Nature Photonics, 2020, 14, 19-23.	15.6	37
143	Gravitational-wave physics with Cosmic Explorer: Limits to low-frequency sensitivity. Physical Review D, 2021, 103, .	1.6	37
144	First cross-correlation analysis of interferometric and resonant-bar gravitational-wave data for stochastic backgrounds. Physical Review D, 2007, 76, .	1.6	35

#	Article	IF	CITATIONS
145	Search for gravitational radiation from intermediate mass black hole binaries in data from the second LIGO-Virgo joint science run. Physical Review D, 2014, 89, .	1.6	35
146	Comprehensive all-sky search for periodic gravitational waves in the sixth science run LIGO data. Physical Review D, 2016, 94, .	1.6	35
147	Implications of Dedicated Seismometer Measurements on Newtonian-Noise Cancellation for Advanced LIGO. Physical Review Letters, 2018, 121, 221104.	2.9	35
148	Implementation of an \$mathcal{F}\$-statistic all-sky search for continuous gravitational waves in Virgo VSR1 data. Classical and Quantum Gravity, 2014, 31, 165014.	1.5	34
149	Observation of three-mode parametric interactions in long optical cavities. Physical Review A, 2008, 78, .	1.0	33
150	dc readout experiment at the Caltech 40m prototype interferometer. Classical and Quantum Gravity, 2008, 25, 114030.	1.5	32
151	Search for high frequency gravitational-wave bursts in the first calendar year of LIGO's fifth science run. Physical Review D, 2009, 80, .	1.6	32
152	A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 008-008.	1.9	32
153	Search for Gravitational Waves Associated with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>¹³</mml:mi>-ray Bursts Detected by the Interplanetary Network. Physical Review Letters, 2014, 113, 011102.</mml:math 	2.9	32
154	First low frequency all-sky search for continuous gravitational wave signals. Physical Review D, 2016, 93, .	1.6	32
155	Interferometric, modulation-free laser stabilization. Optics Letters, 2002, 27, 1905.	1.7	31
156	Search for long-lived gravitational-wave transients coincident with long gamma-ray bursts. Physical Review D, 2013, 88, .	1.6	31
157	Results of the deepest all-sky survey for continuous gravitational waves on LIGO S6 data running on the Einstein@Home volunteer distributed computing project. Physical Review D, 2016, 94, .	1.6	31
158	Mechanical amorphization, flash heating, and frictional melting: Dramatic changes to fault surfaces during the first millisecond of earthquake slip. Geology, 2016, 44, 1043-1046.	2.0	31
159	Phase-sensitive reflection technique for characterization of a Fabry–Perot interferometer. Applied Optics, 2000, 39, 3638.	2.1	30
160	Arm-length stabilisation for interferometric gravitational-wave detectors using frequency-doubled auxiliary lasers. Optics Express, 2012, 20, 81.	1.7	29
161	Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube. Physical Review D, 2014, 90, .	1.6	29
162	Methods and results of a search for gravitational waves associated with gamma-ray bursts using the GEO 600, LIGO, and Virgo detectors. Physical Review D, 2014, 89, .	1.6	29

#	Article	IF	CITATIONS
163	All-sky search for long-duration gravitational wave transients with initial LIGO. Physical Review D, 2016, 93, .	1.6	29
164	Observation of Squeezed Light in the <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:mn>2</mml:mn><mml:mtext> </mml:mtext><mml:mtext> mathvariant="normal">m</mml:mtext></mml:mrow></mml:math> Region. Physical Review Letters, 2018, 120, 203603.	nl:mtext> <r 2.9</r 	nml;mi>î¼
165	Search for gravitational wave ringdowns from perturbed intermediate mass black holes in LIGO-Virgo data from 2005–2010. Physical Review D, 2014, 89, .	1.6	28
166	Tunable narrow-linewidth laser at 2â€Î¼m wavelength for gravitational wave detector research. Optics Express, 2020, 28, 3280.	1.7	27
167	Astrophysically triggered searches for gravitational waves: status and prospects. Classical and Quantum Gravity, 2008, 25, 114051.	1.5	26
168	Gingin High Optical Power Test Facility. Journal of Physics: Conference Series, 2006, 32, 368-373.	0.3	24
169	First Demonstration of Electrostatic Damping of Parametric Instability at Advanced LIGO. Physical Review Letters, 2017, 118, 151102.	2.9	24
170	Three Successive and Interacting Shock Waves Generated by a Solar Flare. Astrophysical Journal, 2008, 684, L45-L49.	1.6	23
171	First joint search for gravitational-wave bursts in LIGO and GEO 600 data. Classical and Quantum Gravity, 2008, 25, 245008.	1.5	22
172	Generation and control of frequency-dependent squeezing via Einstein–Podolsky–Rosen entanglement. Nature Photonics, 2020, 14, 223-226.	15.6	22
173	Application of a Hough search for continuous gravitational waves on data from the fifth LIGO science run. Classical and Quantum Gravity, 2014, 31, 085014.	1.5	21
174	Bayesian Inference for Gravitational Waves from Binary Neutron Star Mergers in Third Generation Observatories. Physical Review Letters, 2021, 127, 081102.	2.9	21
175	AIGO: a southern hemisphere detector for the worldwide array of ground-based interferometric gravitational wave detectors. Classical and Quantum Gravity, 2010, 27, 084005.	1.5	20
176	Mechanical characterisation of the TorPeDO: a low frequency gravitational force sensor. Classical and Quantum Gravity, 2017, 34, 135002.	1.5	20
177	First joint observation by the underground gravitational-wave detector KAGRA with GEO 600. Progress of Theoretical and Experimental Physics, 2022, 2022, .	1.8	20
178	ACIGA's high optical power test facility. Classical and Quantum Gravity, 2004, 21, S887-S893.	1.5	19
179	Search for continuous gravitational waves from neutron stars in globular cluster NGC 6544. Physical Review D, 2017, 95, .	1.6	19
180	LIGO's quantum response to squeezed states. Physical Review D, 2021, 104, .	1.6	19

#	Article	IF	CITATIONS
181	Digital Laser Frequency Stabilization Using an Optical Cavity. IEEE Journal of Quantum Electronics, 2010, 46, 1178-1183.	1.0	18
182	A squeezed light source operated under high vacuum. Scientific Reports, 2016, 5, 18052.	1.6	18
183	All-sky search for long-duration gravitational wave transients in the first Advanced LIGO observing run. Classical and Quantum Gravity, 2018, 35, 065009.	1.5	18
184	Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers. Physical Review D, 2016, 93, .	1.6	17
185	A joint search for gravitational wave bursts with AURIGA and LIGO. Classical and Quantum Gravity, 2008, 25, 095004.	1.5	16
186	Quantum correlation measurements in interferometric gravitational-wave detectors. Physical Review A, 2017, 95, .	1.0	16
187	Observation of a potential future sensitivity limitation from ground motion at LIGO Hanford. Physical Review D, 2020, 101, .	1.6	15
188	Status of the Australian Consortium for Interferometric Gravitational Astronomy. Classical and Quantum Gravity, 2006, 23, S41-S49.	1.5	14
189	Direct measurement of absorption-induced wavefront distortion in high optical power systems. Applied Optics, 2009, 48, 355.	2.1	14
190	Search for transient gravitational waves in coincidence with short-duration radio transients during 2007â \in "2013. Physical Review D, 2016, 93, .	1.6	14
191	Frequency stability of spatial mode interference (tilt) locking. IEEE Journal of Quantum Electronics, 2002, 38, 1521-1528.	1.0	13
192	Quantum enhanced kHz gravitational wave detector with internal squeezing. Classical and Quantum Gravity, 2020, 37, 07LT02.	1.5	13
193	High-sensitivity three-mode optomechanical transducer. Physical Review A, 2011, 84, .	1.0	12
194	A robust single-beam optical trap for a gram-scale mechanical oscillator. Scientific Reports, 2017, 7, 14546.	1.6	12
195	Improving the robustness of the advanced LIGO detectors to earthquakes. Classical and Quantum Gravity, 2020, 37, 235007.	1.5	11
196	Stable transfer of an optical frequency standard via a 46 km optical fiber. Optics Express, 2010, 18, 5213.	1.7	10
197	Tip-tilt mirror suspension: Beam steering for advanced laser interferometer gravitational wave observatory sensing and control signals. Review of Scientific Instruments, 2011, 82, 125108.	0.6	10
198	Testing the suppression of opto-acoustic parametric interactions using optical feedback control. Classical and Quantum Gravity, 2010, 27, 084028.	1.5	9

#	Article	IF	CITATIONS
199	Towards the SQL: Status of the direct thermal-noise measurements at the ANU. Journal of Physics: Conference Series, 2006, 32, 362-367.	0.3	8
200	Double pass locking and spatial mode locking for gravitational wave detectors. Classical and Quantum Gravity, 2002, 19, 1819-1824.	1.5	7
201	Thermal lensing compensation principle for the ACIGA's High Optical Power Test Facility Test 1. General Relativity and Gravitation, 2005, 37, 1581-1589.	0.7	7
202	Feedback control of thermal lensing in a high optical power cavity. Review of Scientific Instruments, 2008, 79, 104501.	0.6	7
203	Observation of optical torsional stiffness in a high optical power cavity. Applied Physics Letters, 2009, 94, 081105.	1.5	7
204	Control and tuning of a suspended Fabry–Perot cavity using digitally enhanced heterodyne interferometry. Optics Letters, 2012, 37, 4952.	1.7	7
205	Squeezed vacuum phase control at 2  μm. Optics Letters, 2019, 44, 5386.	1.7	7
206	Second-generation laser interferometry for gravitational wave detection: ACIGA progress. Classical and Quantum Gravity, 2001, 18, 4121-4126.	1.5	6
207	Technology developments for ACIGA high power test facility for advanced interferometry. Classical and Quantum Gravity, 2005, 22, S199-S208.	1.5	6
208	Measurable signatures of quantum mechanics in a classical spacetime. Physical Review D, 2017, 96, .	1.6	6
209	Effects of transients in LIGO suspensions on searches for gravitational waves. Review of Scientific Instruments, 2017, 88, 124501.	0.6	6
210	Practical test mass and suspension configuration for a cryogenic kilohertz gravitational wave detector. Physical Review D, 2020, 102, .	1.6	6
211	Alignment locking to suspended Fabry-Perot cavity. General Relativity and Gravitation, 2005, 37, 1601-1608.	0.7	5
212	Experimental demonstration of in-loop intracavity intensity-noise suppression. IEEE Journal of Quantum Electronics, 2005, 41, 434-440.	1.0	5
213	Frequency dependence of thermal noise in gram-scale cantilever flexures. Physical Review D, 2015, 92, .	1.6	5
214	Low phase noise squeezed vacuum for future generation gravitational wave detectors. Classical and Quantum Gravity, 2020, 37, 185014.	1.5	5
215	TorPeDO: A Low Frequency Gravitational Force Sensor. Journal of Physics: Conference Series, 2016, 716, 012027.	0.3	4
216	Publisher's Note: All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run [Phys. Rev. D 81 , 102001 (2010)]. Physical Review D, 2012, 85, .	1.6	3

#	Article	IF	CITATIONS
217	Optomechanical design and construction of a vacuum-compatible optical parametric oscillator for generation of squeezed light. Review of Scientific Instruments, 2016, 87, 063104.	0.6	3
218	Point Absorber Limits to Future Gravitational-Wave Detectors. Physical Review Letters, 2021, 127, 241102.	2.9	3
219	High dynamic range flexure transfer function measurement. Classical and Quantum Gravity, 2002, 19, 1683-1687.	1.5	2
220	Australia's Role in Gravitational Wave Detection. Publications of the Astronomical Society of Australia, 2003, 20, 223-241.	1.3	2
221	Publisher's Note: Search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar [Phys. Rev. D83, 042001 (2011)]. Physical Review D, 2012, 85, .	1.6	2
222	Publisher's Note: Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1 [Phys. Rev. D82, 102001 (2010)]. Physical Review D, 2012, 85, .	1.6	2
223	Concepts and research for future detectors. General Relativity and Gravitation, 2014, 46, 1.	0.7	2
224	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. , 2018, 21, 1.		2
225	Status of ACIGA High Power Test Facility for advanced interferometry. , 2004, , .		1
226	A Comparison Between Digital and Analog Pound-Drever-Hall Laser Stabilization. , 2009, , .		1
227	Optimal quantum noise cancellation with an entangled witness channel. Physical Review Research, 2021, 3, .	1.3	1
228	ACIGA: status report. , 2003, , .		0
229	Publisher's Note: First cross-correlation analysis of interferometric and resonant-bar gravitational-wave data for stochastic backgrounds [Phys. Rev. DPRVDAQ0556-282176, 022001 (2007)]. Physical Review D, 2007, 76, .	1.6	Ο
230	Publisher's Note: Upper limit map of a background of gravitational waves [Phys. Rev. D 76 , 082003 (2007)]. Physical Review D, 2008, 77, .	1.6	0
231	Publisher's Note: Upper limits on gravitational wave emission from 78 radio pulsars [Phys. Rev. D76, 042001 (2007)]. Physical Review D, 2008, 77, .	1.6	Ο
232	Publisher's Note: All-sky search for periodic gravitational waves in LIGO S4 data [Phys. Rev. D77, 022001 (2008)]. Physical Review D, 2008, 77, .	1.6	0
233	Publisher's Note: First cross-correlation analysis of interferometric and resonant-bar gravitational-wave data for stochastic backgrounds [Phys. Rev. D 76 , 022001 (2007)]. Physical Review D, 2008, 77, .	1.6	0
234	Publisher's Note: Search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar [Phys. Rev. D83, 042001 (2011)]. Physical Review D, 2011, 83, .	1.6	0

#	Article	IF	CITATIONS
235	Publisher's Note: Search for gravitational waves from binary black hole inspiral, merger, and ringdown [Phys. Rev. D83, 122005 (2011)]. Physical Review D, 2012, 85, .	1.6	0
236	Large dynamic range, high resolution optical heterodyne readout for high velocity slip events. Review of Scientific Instruments, 2022, 93, 064503.	0.6	0
237	Research and Development for Third-Generation Gravitational Wave Detectors. , 2022, , 301-360.		0