## Marta Sevilla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3578834/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The production of carbon materials by hydrothermal carbonization of cellulose. Carbon, 2009, 47, 2281-2289.                                                                                                             | 10.3 | 1,550     |
| 2  | Energy storage applications of activated carbons: supercapacitors and hydrogen storage. Energy and Environmental Science, 2014, 7, 1250-1280.                                                                           | 30.8 | 1,229     |
| 3  | Chemical and Structural Properties of Carbonaceous Products Obtained by Hydrothermal Carbonization of Saccharides. Chemistry - A European Journal, 2009, 15, 4195-4203.                                                 | 3.3  | 1,193     |
| 4  | Sustainable porous carbons with a superior performance for CO2 capture. Energy and Environmental Science, 2011, 4, 1765.                                                                                                | 30.8 | 892       |
| 5  | Nâ€Đoped Polypyrroleâ€Based Porous Carbons for CO <sub>2</sub> Capture. Advanced Functional<br>Materials, 2011, 21, 2781-2787.                                                                                          | 14.9 | 840       |
| 6  | Black perspectives for a green future: hydrothermal carbons for environment protection and energy storage. Energy and Environmental Science, 2012, 5, 6796.                                                             | 30.8 | 758       |
| 7  | Direct Synthesis of Highly Porous Interconnected Carbon Nanosheets and Their Application as<br>High-Performance Supercapacitors. ACS Nano, 2014, 8, 5069-5078.                                                          | 14.6 | 654       |
| 8  | Hydrothermal Carbonization of Abundant Renewable Natural Organic Chemicals for<br>Highâ€Performance Supercapacitor Electrodes. Advanced Energy Materials, 2011, 1, 356-361.                                             | 19.5 | 538       |
| 9  | Catalytic graphitization of templated mesoporous carbons. Carbon, 2006, 44, 468-474.                                                                                                                                    | 10.3 | 422       |
| 10 | High density hydrogen storage in superactivated carbons from hydrothermally carbonized renewable<br>organic materials. Energy and Environmental Science, 2011, 4, 1400.                                                 | 30.8 | 411       |
| 11 | Fe–N-Doped Carbon Capsules with Outstanding Electrochemical Performance and Stability for the<br>Oxygen Reduction Reaction in Both Acid and Alkaline Conditions. ACS Nano, 2016, 10, 5922-5932.                         | 14.6 | 403       |
| 12 | Polypyrroleâ€Derived Activated Carbons for Highâ€Performance Electrical Doubleâ€Layer Capacitors with<br>Ionic Liquid Electrolyte. Advanced Functional Materials, 2012, 22, 827-834.                                    | 14.9 | 396       |
| 13 | Hydrothermal carbonization of biomass as a route for the sequestration of CO2: Chemical and structural properties of the carbonized products. Biomass and Bioenergy, 2011, 35, 3152-3159.                               | 5.7  | 341       |
| 14 | Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonisation of corn stover. Soil Research, 2010, 48, 618.                                                          | 1.1  | 332       |
| 15 | Assessment of the Role of Micropore Size and N-Doping in CO <sub>2</sub> Capture by Porous<br>Carbons. ACS Applied Materials & Interfaces, 2013, 5, 6360-6368.                                                          | 8.0  | 324       |
| 16 | Biomassâ€Đerived Carbon Quantum Dot Sensitizers for Solidâ€State Nanostructured Solar Cells.<br>Angewandte Chemie - International Edition, 2015, 54, 4463-4468.                                                         | 13.8 | 315       |
| 17 | Sulfur-containing activated carbons with greatly reduced content of bottle neck pores for<br>double-layer capacitors: a case study for pseudocapacitance detection. Energy and Environmental<br>Science, 2013, 6, 2465. | 30.8 | 309       |
| 18 | High-performance CO2 sorbents from algae. RSC Advances, 2012, 2, 12792.                                                                                                                                                 | 3.6  | 227       |

| #  | Article                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Hierarchical Microporous/Mesoporous Carbon Nanosheets for High-Performance Supercapacitors.<br>ACS Applied Materials & Interfaces, 2015, 7, 4344-4353.                                                                | 8.0  | 220       |
| 20 | N-doped porous carbon capsules with tunable porosity for high-performance supercapacitors.<br>Journal of Materials Chemistry A, 2015, 3, 2914-2923.                                                                   | 10.3 | 214       |
| 21 | One-step synthesis of silica@resorcinol–formaldehyde spheres and their application for the fabrication of polymer and carbon capsules. Chemical Communications, 2012, 48, 6124.                                       | 4.1  | 203       |
| 22 | Beyond KOH activation for the synthesis of superactivated carbons from hydrochar. Carbon, 2017, 114, 50-58.                                                                                                           | 10.3 | 203       |
| 23 | The influence of pore size distribution on the oxygen reduction reaction performance in nitrogen doped carbon microspheres. Journal of Materials Chemistry A, 2016, 4, 2581-2589.                                     | 10.3 | 195       |
| 24 | CO2 adsorption by activated templated carbons. Journal of Colloid and Interface Science, 2012, 366, 147-154.                                                                                                          | 9.4  | 194       |
| 25 | Efficient metal-free N-doped mesoporous carbon catalysts for ORR by a template-free approach.<br>Carbon, 2016, 106, 179-187.                                                                                          | 10.3 | 185       |
| 26 | A Green Approach to Highâ€Performance Supercapacitor Electrodes: The Chemical Activation of<br>Hydrochar with Potassium Bicarbonate. ChemSusChem, 2016, 9, 1880-1888.                                                 | 6.8  | 173       |
| 27 | Hydrothermal Carbons from Hemicelluloseâ€Derived Aqueous Hydrolysis Products as Electrode<br>Materials for Supercapacitors. ChemSusChem, 2013, 6, 374-382.                                                            | 6.8  | 169       |
| 28 | Hydrothermal synthesis of microalgae-derived microporous carbons for electrochemical capacitors.<br>Journal of Power Sources, 2014, 267, 26-32.                                                                       | 7.8  | 158       |
| 29 | Ultrahigh surface area polypyrrole-based carbons with superior performance for hydrogen storage.<br>Energy and Environmental Science, 2011, 4, 2930.                                                                  | 30.8 | 155       |
| 30 | Synthesis of Graphitic Carbon Nanostructures from Sawdust and Their Application as Electrocatalyst<br>Supports. Journal of Physical Chemistry C, 2007, 111, 9749-9756.                                                | 3.1  | 147       |
| 31 | A general and facile synthesis strategy towards highly porous carbons: carbonization of organic salts. Journal of Materials Chemistry A, 2013, 1, 13738.                                                              | 10.3 | 147       |
| 32 | Optimization of the Pore Structure of Biomass-Based Carbons in Relation to Their Use for<br>CO <sub>2</sub> Capture under Low- and High-Pressure Regimes. ACS Applied Materials &<br>Interfaces, 2018, 10, 1623-1633. | 8.0  | 146       |
| 33 | Fabrication of porous carbon monoliths with a graphitic framework. Carbon, 2013, 56, 155-166.                                                                                                                         | 10.3 | 141       |
| 34 | More Sustainable Chemical Activation Strategies for the Production of Porous Carbons.<br>ChemSusChem, 2021, 14, 94-117.                                                                                               | 6.8  | 137       |
| 35 | Graphitic carbon nanostructures from cellulose. Chemical Physics Letters, 2010, 490, 63-68.                                                                                                                           | 2.6  | 136       |
| 36 | Renewable Nitrogenâ€Doped Hydrothermal Carbons Derived from Microalgae. ChemSusChem, 2012, 5,<br>1834-1840.                                                                                                           | 6.8  | 135       |

| #  | Article                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | From Soybean residue to advanced supercapacitors. Scientific Reports, 2015, 5, 16618.                                                                                                | 3.3  | 134       |
| 38 | Versatile Cellulose-Based Carbon Aerogel for the Removal of Both Cationic and Anionic Metal Contaminants from Water. ACS Applied Materials & amp; Interfaces, 2015, 7, 25875-25883.  | 8.0  | 119       |
| 39 | One-step synthesis of ultra-high surface area nanoporous carbons and their application for electrochemical energy storage. Carbon, 2018, 131, 193-200.                               | 10.3 | 119       |
| 40 | Sustainable supercapacitor electrodes produced by the activation of biomass with sodium thiosulfate. Energy Storage Materials, 2019, 18, 356-365.                                    | 18.0 | 118       |
| 41 | Performance of templated mesoporous carbons in supercapacitors. Electrochimica Acta, 2007, 52, 3207-3215.                                                                            | 5.2  | 116       |
| 42 | Mesoporous carbons synthesized by direct carbonization of citrate salts for use as high-performance capacitors. Carbon, 2015, 88, 239-251.                                           | 10.3 | 113       |
| 43 | Surface Modification of CNTs with N-Doped Carbon: An Effective Way of Enhancing Their Performance in Supercapacitors. ACS Sustainable Chemistry and Engineering, 2014, 2, 1049-1055. | 6.7  | 111       |
| 44 | One-Pot Synthesis of Biomass-Based Hierarchical Porous Carbons with a Large Porosity Development.<br>Chemistry of Materials, 2017, 29, 6900-6907.                                    | 6.7  | 110       |
| 45 | Preparation and hydrogen storage capacity of highly porous activated carbon materials derived from polythiophene. International Journal of Hydrogen Energy, 2011, 36, 15658-15663.   | 7.1  | 103       |
| 46 | Superactivated carbide-derived carbons with high hydrogenstorage capacity. Energy and Environmental Science, 2010, 3, 223-227.                                                       | 30.8 | 102       |
| 47 | High-surface area carbons from renewable sources with a bimodal micro-mesoporosity for high-performance ionic liquid-based supercapacitors. Carbon, 2015, 94, 41-52.                 | 10.3 | 98        |
| 48 | Synthetic Route to Nanocomposites Made Up of Inorganic Nanoparticles Confined within a Hollow<br>Mesoporous Carbon Shell. Chemistry of Materials, 2007, 19, 5418-5423.               | 6.7  | 97        |
| 49 | Boosting High-Performance in Lithium–Sulfur Batteries via Dilute Electrolyte. Nano Letters, 2020, 20,<br>5391-5399.                                                                  | 9.1  | 93        |
| 50 | Molten salt strategies towards carbon materials for energy storage and conversion. Energy Storage<br>Materials, 2021, 38, 50-69.                                                     | 18.0 | 90        |
| 51 | Synthesis of Uniform Mesoporous Carbon Capsules by Carbonization of Organosilica Nanospheres.<br>Chemistry of Materials, 2010, 22, 2526-2533.                                        | 6.7  | 84        |
| 52 | Soy protein directed hydrothermal synthesis of porous carbon aerogels for electrocatalytic oxygen reduction. Carbon, 2016, 96, 622-630.                                              | 10.3 | 84        |
| 53 | Direct synthesis of graphitic carbon nanostructures from saccharides and their use as electrocatalytic supports. Carbon, 2008, 46, 931-939.                                          | 10.3 | 83        |
| 54 | Polypyrrole-derived mesoporous nitrogen-doped carbons with intrinsic catalytic activity in the oxygen reduction reaction. RSC Advances, 2013, 3, 9904.                               | 3.6  | 83        |

| #  | Article                                                                                                                                                                                                 | IF                            | CITATIONS  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------|
| 55 | Highly dispersed platinum nanoparticles on carbon nanocoils and their electrocatalytic performance for fuel cell reactions. Electrochimica Acta, 2009, 54, 2234-2238.                                   | 5.2                           | 78         |
| 56 | A sustainable approach to hierarchically porous carbons from tannic acid and their utilization in supercapacitive energy storage systems. Journal of Materials Chemistry A, 2019, 7, 14280-14290.       | 10.3                          | 77         |
| 57 | Sulfonated mesoporous silica–carbon composites and their use as solid acid catalysts. Applied<br>Surface Science, 2012, 261, 574-583.                                                                   | 6.1                           | 76         |
| 58 | Highly porous S-doped carbons. Microporous and Mesoporous Materials, 2012, 158, 318-323.                                                                                                                | 4.4                           | 75         |
| 59 | One-pot synthesis of microporous carbons highly enriched in nitrogen and their electrochemical performance. Journal of Materials Chemistry A, 2014, 2, 14439-14448.                                     | 10.3                          | 74         |
| 60 | Saccharide-based graphitic carbon nanocoils as supports for PtRu nanoparticles for methanol electrooxidation. Journal of Power Sources, 2007, 171, 546-551.                                             | 7.8                           | 71         |
| 61 | Synthesis of Carbonâ€based Solid Acid Microspheres and Their Application to the Production of<br>Biodiesel. ChemSusChem, 2010, 3, 1352-1354.                                                            | 6.8                           | 71         |
| 62 | Encapsulation of nanosized catalysts in the hollow core of a mesoporous carbon capsule. Journal of Catalysis, 2007, 251, 239-243.                                                                       | 6.2                           | 70         |
| 63 | Enhancement of Hydrogen Storage Capacity of Zeolite-Templated Carbons by Chemical Activation.<br>Journal of Physical Chemistry C, 2010, 114, 11314-11319.                                               | 3.1                           | 68         |
| 64 | Solid-phase synthesis of graphitic carbon nanostructures from iron and cobalt gluconates and their utilization as electrocatalyst supports. Physical Chemistry Chemical Physics, 2008, 10, 1433.        | 2.8                           | 67         |
| 65 | Preparation, Characterization, and Enzyme Immobilization Capacities of Superparamagnetic Silica/Iron<br>Oxide Nanocomposites with Mesostructured Porosity. Chemistry of Materials, 2009, 21, 1806-1814. | 6.7                           | 67         |
| 66 | N-doped microporous carbon microspheres for high volumetric performance supercapacitors.<br>Electrochimica Acta, 2015, 168, 320-329.                                                                    | 5.2                           | 66         |
| 67 | Synthesis strategies of templated porous carbons beyond the silica nanocasting technique. Carbon, 2021, 178, 451-476.                                                                                   | 10.3                          | 66         |
| 68 | Superior Capacitive Performance of Hydrocharâ€Based Porous Carbons in Aqueous Electrolytes.<br>ChemSusChem, 2015, 8, 1049-1057.                                                                         | 6.8                           | 65         |
| 69 | Highly Porous Renewable Carbons for Enhanced Storage of Energy-Related Gases (H <sub>2</sub> and) Tj ETQq1                                                                                              | 1 <sub>.0.</sub> 78431<br>6.7 | l4rgBT /O∨ |
| 70 | Synthesis of perfectly ordered mesoporous carbons by water-assisted mechanochemical self-assembly of tannin. Green Chemistry, 2018, 20, 5123-5132.                                                      | 9.0                           | 62         |
| 71 | Fabrication of Monodisperse Mesoporous Carbon Capsules Decorated with Ferrite Nanoparticles.<br>Journal of Physical Chemistry C, 2008, 112, 3648-3654.                                                  | 3.1                           | 60         |
| 72 | Supercapacitive Behavior of Two Glucoseâ€Derived Microporous Carbons: Direct Pyrolysis versus Hydrothermal Carbonization. ChemElectroChem, 2014, 1, 2138-2145.                                          | 3.4                           | 59         |

| #  | Article                                                                                                                                                                                                                                                                                                                                                      | IF                | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------|
| 73 | Synthesis of magnetically separable adsorbents through the incorporation of protected nickel nanoparticles in an activated carbon. Carbon, 2006, 44, 1954-1957.                                                                                                                                                                                              | 10.3              | 57        |
| 74 | A Green Route to High-Surface Area Carbons by Chemical Activation of Biomass-Based Products with Sodium Thiosulfate. ACS Sustainable Chemistry and Engineering, 2018, 6, 16323-16331.                                                                                                                                                                        | 6.7               | 57        |
| 75 | Graphene-cellulose tissue composites for high power supercapacitors. Energy Storage Materials, 2016, 5, 33-42.                                                                                                                                                                                                                                               | 18.0              | 53        |
| 76 | Synthesis of Highly Uniform Mesoporous Sub-Micrometric Capsules of Silicon Oxycarbide and Silica.<br>Chemistry of Materials, 2007, 19, 3096-3098.                                                                                                                                                                                                            | 6.7               | 50        |
| 77 | Easy synthesis of graphitic carbon nanocoils from saccharides. Materials Chemistry and Physics, 2009, 113, 208-214.                                                                                                                                                                                                                                          | 4.0               | 46        |
| 78 | Synthesis of colloidal silica nanoparticles of a tunable mesopore size and their application to the adsorption of biomolecules. Journal of Colloid and Interface Science, 2010, 349, 173-180.                                                                                                                                                                | 9.4               | 46        |
| 79 | High-Rate Capability of Supercapacitors Based on Tannin-Derived Ordered Mesoporous Carbons. ACS<br>Sustainable Chemistry and Engineering, 2019, 7, 17627-17635.                                                                                                                                                                                              | 6.7               | 46        |
| 80 | On the electrical double-layer capacitance of mesoporous templated carbons. Carbon, 2005, 43, 3012-3015.                                                                                                                                                                                                                                                     | 10.3              | 45        |
| 81 | Activation of carbide-derived carbons: a route to materials with enhanced gas and energy storage properties. Journal of Materials Chemistry, 2011, 21, 4727-4732.                                                                                                                                                                                            | 6.7               | 41        |
| 82 | Sustainable Salt Templateâ€Assisted Chemical Activation for the Production of Porous Carbons with Enhanced Power Handling Ability in Supercapacitors. Batteries and Supercaps, 2019, 2, 701-711.                                                                                                                                                             | 4.7               | 41        |
| 83 | Anatase TiO <sub>2</sub> Confined in Carbon Nanopores for Highâ€Energy Liâ€Ion Hybrid Supercapacitors<br>Operating at High Rates and Subzero Temperatures. Advanced Energy Materials, 2020, 10, 1902993.                                                                                                                                                     | 19.5              | 39        |
| 84 | Mesostructured silica–carbon composites synthesized by employing surfactants as carbon source.<br>Microporous and Mesoporous Materials, 2010, 134, 165-174.                                                                                                                                                                                                  | 4.4               | 38        |
| 85 | Synthesis and characterisation of mesoporous carbons of large textural porosity and tunable pore size by templating mesostructured HMS silica materials. Microporous and Mesoporous Materials, 2004, 74, 49-58.                                                                                                                                              | 4.4               | 37        |
| 86 | Aqueous Dispersions of Graphene from Electrochemically Exfoliated Graphite. Chemistry - A European<br>Journal, 2016, 22, 17351-17358.                                                                                                                                                                                                                        | 3.3               | 37        |
| 87 | Free-standing hybrid films based on graphene and porous carbon particles for flexible supercapacitors. Sustainable Energy and Fuels, 2017, 1, 127-137.                                                                                                                                                                                                       | 4.9               | 37        |
| 88 | xmlns:mml="http://www.w3.org/1998/Math/MathML"<br>display="inline"> <mml:mrow><mml:mi><sup>13</sup></mml:mi><mml:mtext>-Fe</mml:mtext></mml:mrow> co<br>surrounded by <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"&gt;<mml:mrow><mml:mi+1+(mml:mi><mml:mtext>-Fe</mml:mtext></mml:mi+1+(mml:mi></mml:mrow></mml:math> an | re <sub>3.2</sub> | 34        |
| 89 | iron oxide shells. Physical Review B, 2010, 81, .<br>Enhanced Protection of Carbon-Encapsulated Magnetic Nickel Nanoparticles through a Sucrose-Based<br>Synthetic Strategy. Journal of Physical Chemistry C, 2011, 115, 5294-5300.                                                                                                                          | 3.1               | 34        |
| 90 | Boosting the Oxygen Reduction Electrocatalytic Performance of Nonprecious Metal Nanocarbons via<br>Triple Boundary Engineering Using Protic Ionic Liquids. ACS Applied Materials & Interfaces, 2019, 11,<br>11298-11305.                                                                                                                                     | 8.0               | 34        |

| #   | Article                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Iron/Nitrogen co-doped mesoporous carbon synthesized by an endo-templating approach as an<br>efficient electrocatalyst for the oxygen reduction reaction. Microporous and Mesoporous Materials,<br>2019, 278, 280-288.                                   | 4.4  | 34        |
| 92  | Magnetically separable bimodal mesoporous carbons with a large capacity for the immobilization of biomolecules. Carbon, 2009, 47, 2519-2527.                                                                                                             | 10.3 | 33        |
| 93  | Carboxyl-functionalized mesoporous silica–carbon composites as highly efficient adsorbents in<br>liquid phase. Microporous and Mesoporous Materials, 2013, 176, 78-85.                                                                                   | 4.4  | 33        |
| 94  | Defining a performance map of porous carbon sorbents for high-pressure carbon dioxide uptake and carbon dioxide–methane selectivity. Journal of Materials Chemistry A, 2016, 4, 14739-14751.                                                             | 10.3 | 33        |
| 95  | Signatures of Clustering in Superparamagnetic Colloidal Nanocomposites of an Inorganic and Hybrid<br>Nature. Small, 2008, 4, 254-261.                                                                                                                    | 10.0 | 30        |
| 96  | Straightforward synthesis of Sulfur/N,S-codoped carbon cathodes for Lithium-Sulfur batteries.<br>Scientific Reports, 2020, 10, 4866.                                                                                                                     | 3.3  | 29        |
| 97  | Functionalization of mesostructured silica–carbon composites. Materials Chemistry and Physics, 2013, 139, 281-289.                                                                                                                                       | 4.0  | 28        |
| 98  | Detailed carbon chemistry in charcoals from preâ€ <scp>E</scp> uropean <scp>M</scp> Äori gardens of<br><scp>N</scp> ew <scp>Z</scp> ealand as a tool for understanding biochar stability in soils. European<br>Journal of Soil Science, 2014, 65, 83-95. | 3.9  | 28        |
| 99  | N/S-Co-doped Porous Carbon Nanoparticles Serving the Dual Function of Sulfur Host and Separator<br>Coating in Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2020, 3, 3397-3407.                                                                | 5.1  | 28        |
| 100 | Fabrication of mesoporous SiO2–C–Fe3O4/γ–Fe2O3 and SiO2–C–Fe magnetic composites. Journal of Colloid and Interface Science, 2009, 340, 230-236.                                                                                                          | 9.4  | 24        |
| 101 | Co nanoparticles inserted into a porous carbon amorphous matrix: the role of cooling field and temperature on the exchange bias effect. Physical Chemistry Chemical Physics, 2011, 13, 927-932.                                                          | 2.8  | 24        |
| 102 | A simple and general approach for <i>in situ</i> synthesis of sulfur–porous carbon composites for<br>lithium–sulfur batteries. Sustainable Energy and Fuels, 2019, 3, 3498-3509.                                                                         | 4.9  | 23        |
| 103 | Templated Synthesis of Mesoporous Superparamagnetic Polymers. Advanced Functional Materials, 2007, 17, 2321-2327.                                                                                                                                        | 14.9 | 21        |
| 104 | Nickel nanoparticles deposited into an activated porous carbon: synthesis, microstructure and magnetic properties. Physica Status Solidi - Rapid Research Letters, 2009, 3, 4-6.                                                                         | 2.4  | 21        |
| 105 | Control of the structural properties of mesoporous polymers synthesized using porous silica materials as templates. Microporous and Mesoporous Materials, 2008, 112, 319-326.                                                                            | 4.4  | 20        |
| 106 | Commentary: Methods of calculating the volumetric performance of a supercapacitor. Energy Storage Materials, 2016, 4, 154-155.                                                                                                                           | 18.0 | 20        |
| 107 | Pore Characteristics for Efficient CO <sub>2</sub> Storage in Hydrated Carbons. ACS Applied<br>Materials & Interfaces, 2019, 11, 44390-44398.                                                                                                            | 8.0  | 18        |
| 108 | A Simple Approach towards Highly Dense Solvated Graphene Films for Supercapacitors. ChemNanoMat, 2016, 2, 33-36.                                                                                                                                         | 2.8  | 16        |

| #   | Article                                                                                                                                                                                            | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Iron–Nitrogen-Doped Dendritic Carbon Nanostructures for an Efficient Oxygen Reduction Reaction.<br>ACS Applied Energy Materials, 2018, 1, 6560-6568.                                               | 5.1  | 16        |
| 110 | Flexible, Free‣tanding and Holey Graphene Paper for Highâ€Power Supercapacitors. ChemNanoMat, 2016,<br>2, 1055-1063.                                                                               | 2.8  | 15        |
| 111 | Model carbon materials derived from tannin to assess the importance of pore connectivity in supercapacitors. Renewable and Sustainable Energy Reviews, 2021, 151, 111600.                          | 16.4 | 14        |
| 112 | Exchange-bias and superparamagnetic behaviour of Fe nanoparticles embedded in a porous carbon matrix. Journal of Non-Crystalline Solids, 2008, 354, 5219-5221.                                     | 3.1  | 13        |
| 113 | Silica@Carbon mesoporous nanorattle structures synthesised by means of a selective etching strategy. Materials Letters, 2010, 64, 1587-1590.                                                       | 2.6  | 11        |
| 114 | Dense (non-hollow) carbon nanospheres: synthesis and electrochemical energy applications.<br>Materials Today Nano, 2021, 16, 100147.                                                               | 4.6  | 11        |
| 115 | Control of crystalline phases in magnetic Fe nanoparticles inserted inside a matrix of porous carbon.<br>Journal of Magnetism and Magnetic Materials, 2010, 322, 1300-1303.                        | 2.3  | 10        |
| 116 | Highly Packed Monodisperse Porous Carbon Microspheres for Energy Storage in Supercapacitors and<br>Liã`'S Batteries. ChemElectroChem, 2020, 7, 3798-3810.                                          | 3.4  | 10        |
| 117 | Onion-like nanoparticles with γ-Fe core surrounded by a α-Fe/Fe-oxide double shell. Journal of Alloys<br>and Compounds, 2011, 509, S320-S322.                                                      | 5.5  | 9         |
| 118 | CO2 Storage on Nanoporous Carbons. Green Energy and Technology, 2019, , 287-330.                                                                                                                   | 0.6  | 8         |
| 119 | Cellulose as a Precursor of Highâ€Performance Energy Storage Materials in Li–S Batteries and<br>Supercapacitors. Energy Technology, 2021, 9, 2100268.                                              | 3.8  | 5         |
| 120 | Introduction to (photo)electrocatalysis for renewable energy. Chemical Communications, 2021, 57, 1540-1542.                                                                                        | 4.1  | 3         |
| 121 | Monodisperse Porous Carbon Nanospheres with Ultraâ€High Surface Area for Energy Storage in<br>Electrochemical Capacitors. Batteries and Supercaps, 2022, 5, .                                      | 4.7  | 3         |
| 122 | Facile synthesis of graphitic carbons decorated with SnO2 nanoparticles and their application as high capacity lithium-ion battery anodes. Journal of Applied Electrochemistry, 2012, 42, 901-908. | 2.9  | 2         |
| 123 | Monodisperse Porous Carbon Nanospheres with Ultraâ€High Surface Area for Energy Storage in<br>Electrochemical Capacitors. Batteries and Supercaps, 0, , .                                          | 4.7  | 2         |
| 124 | Hydrothermal Carbonization of Abundant Renewable Natural Organic Chemicals for<br>High-Performance Supercapacitor Electrodes. Advanced Energy Materials, 2011, , n/a-n/a.                          | 19.5 | 0         |