
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3578371/publications.pdf Version: 2024-02-01

13

#	Article	IF	CITATIONS
1	Ferroptosis: regulation by competition between NRF2 and BACH1 and propagation of the death signal. FEBS Journal, 2023, 290, 1688-1704.	2.2	47
2	Genetic BACH1 deficiency alters mitochondrial function and increases NLRP3 inflammasome activation in mouse macrophages. Redox Biology, 2022, 51, 102265.	3.9	10
3	The Cysâ€Pro motifs in the intrinsically disordered regions of the transcription factor BACH1 mediate distinct and overlapping functions upon heme binding. FEBS Letters, 2022, 596, 1576-1585.	1.3	5
4	IRF2BP2 is a novel HNF4α co-repressor: Its role in gluconeogenic gene regulation via biochemically labile interaction. Biochemical and Biophysical Research Communications, 2022, 615, 81-87.	1.0	1
5	mTORC1-independent translation control in mammalian cells by methionine adenosyltransferase 2A and S-adenosylmethionine. Journal of Biological Chemistry, 2022, 298, 102084.	1.6	3
6	Congenital sideroblastic anemia model due to ALAS2 mutation is susceptible to ferroptosis. Scientific Reports, 2022, 12, .	1.6	2
7	BACH1-Hemoxygenase-1 axis regulates cellular energetics and survival following sepsis. Free Radical Biology and Medicine, 2022, 188, 134-145.	1.3	6
8	Study Profile of the Tohoku Medical Megabank Community-Based Cohort Study. Journal of Epidemiology, 2021, 31, 65-76.	1.1	81
9	Bach1 plays an important role in angiogenesis through regulation of oxidative stress. Microvascular Research, 2021, 134, 104126.	1.1	15
10	Lipid peroxidation and the subsequent cell death transmitting from ferroptotic cells to neighboring cells. Cell Death and Disease, 2021, 12, 332.	2.7	50
11	Protocol for in vitro BCR-mediated plasma cell differentiation and purification of chromatin-associated proteins. STAR Protocols, 2021, 2, 100633.	0.5	1
12	Identification and Functional Characterization of a Novel Androgen Receptor Coregulator, EAP1. Journal of the Endocrine Society, 2021, 5, bvab150.	0.1	4
13	The transcription factor BACH1 at the crossroads of cancer biology: From epithelial–mesenchymal transition to ferroptosis. Journal of Biological Chemistry, 2021, 297, 101032.	1.6	44
14	Bach1 derepression is neuroprotective in a mouse model of Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	26
15	Increased expression of heme oxygenase-1 suppresses airway branching morphogenesis in fetal mouse lungs exposed to inflammation. Pediatric Research, 2020, 87, 494-500.	1.1	2
16	Cohort Profile: Tohoku Medical Megabank Project Birth and Three-Generation Cohort Study (TMM) Tj ETQqO 0 0 2020, 49, 18-19m.	rgBT /Ovei 0.9	rlock 10 Tf 50 107
17	Ferroptosis is controlled by the coordinated transcriptional regulation of glutathione and labile iron metabolism by the transcription factor BACH1. Journal of Biological Chemistry, 2020, 295, 69-82.	1.6	141

Bach1 promotes muscle regeneration through repressing Smad-mediated inhibition of myoblast
differentiation. PLoS ONE, 2020, 15, e0236781.

#	Article	IF	CITATIONS
19	N 1-methyladenosine (m1A) RNA modification: the key to ribosome control. Journal of Biochemistry, 2020, 167, 535-539.	0.9	32
20	BACH1 Promotes Pancreatic Cancer Metastasis by Repressing Epithelial Genes and Enhancing Epithelial–Mesenchymal Transition. Cancer Research, 2020, 80, 1279-1292.	0.4	69
21	Methyl-Metabolite Depletion Elicits Adaptive Responses to Support Heterochromatin Stability and Epigenetic Persistence. Molecular Cell, 2020, 78, 210-223.e8.	4.5	45
22	Chromatin Protein PC4 Orchestrates B Cell Differentiation by Collaborating with IKAROS and IRF4. Cell Reports, 2020, 33, 108517.	2.9	19
23	Strategy towards tailored donor tissue-specific pancreatic islet isolation. PLoS ONE, 2019, 14, e0216136.	1.1	5
24	TLR4 activation alters labile heme levels to regulate BACH1 and heme oxygenase-1 expression in macrophages. Free Radical Biology and Medicine, 2019, 137, 131-142.	1.3	33
25	Functional Heme Binding to the Intrinsically Disordered C-Terminal Region of Bach1, a Transcriptional Repressor. Tohoku Journal of Experimental Medicine, 2019, 247, 153-159.	0.5	8
26	Biophysical characterization of heme binding to the intrinsically disordered region of Bach1. European Biophysics Journal, 2019, 48, 361-369.	1.2	5
27	To be red or white: lineage commitment and maintenance of the hematopoietic system by the "inner myeloid― Haematologica, 2019, 104, 1919-1927.	1.7	25
28	Lactate dehydrogenase C is required for the protein expression of a sperm-specific isoform of lactate dehydrogenase A. Journal of Biochemistry, 2019, 165, 323-334.	0.9	15
29	Phosphorylation of BACH1 switches its function from transcription factor to mitotic chromosome regulator and promotes its interaction with HMMR. Biochemical Journal, 2018, 475, 981-1002.	1.7	19
30	Transcription Factor IRF8 Governs Enhancer Landscape Dynamics in Mononuclear Phagocyte Progenitors. Cell Reports, 2018, 22, 2628-2641.	2.9	46
31	Bach2 Promotes B Cell Receptor–Induced Proliferation of B Lymphocytes and Represses Cyclin-Dependent Kinase Inhibitors. Journal of Immunology, 2018, 200, 2882-2893.	0.4	31
32	SUMO modification system facilitates the exchange of histone variant H2A.Z-2 at DNA damage sites. Nucleus, 2018, 9, 87-94.	0.6	20
33	Infection perturbs Bach2- and Bach1-dependent erythroid lineage â€~choice' to cause anemia. Nature Immunology, 2018, 19, 1059-1070.	7.0	27
34	Zinc finger–IRF composite elements bound by Ikaros/IRF4 complexes function as gene repression in plasma cell. Blood Advances, 2018, 2, 883-894.	2.5	31
35	<i>O</i> -GlcNAcylation Signal Mediates Proteasome Inhibitor Resistance in Cancer Cells by Stabilizing NRF1. Molecular and Cellular Biology, 2018, 38, .	1.1	43
36	Endogenous Purification of NR4A2 (Nurr1) Identified Poly(ADP-Ribose) Polymerase 1 as a Prime Coregulator in Human Adrenocortical H295R Cells. International Journal of Molecular Sciences, 2018, 19, 1406.	1.8	5

#	Article	IF	CITATIONS
37	Dysregulated heme oxygenase-1low M2-like macrophages augment lupus nephritis via Bach1 induced by type I interferons. Arthritis Research and Therapy, 2018, 20, 64.	1.6	42
38	Genetic ablation of Bach1 gene enhances recovery from hyperoxic lung injury in newborn mice via transient upregulation of inflammatory genes. Pediatric Research, 2017, 81, 926-931.	1.1	19
39	A Bach2-Cebp Gene Regulatory Network for the Commitment of Multipotent Hematopoietic Progenitors. Cell Reports, 2017, 18, 2401-2414.	2.9	42
40	BACH transcription factors in innate and adaptive immunity. Nature Reviews Immunology, 2017, 17, 437-450.	10.6	90
41	Glucocorticoid receptor signaling represses the antioxidant response by inhibiting histone acetylation mediated by the transcriptional activator NRF2. Journal of Biological Chemistry, 2017, 292, 7519-7530.	1.6	87
42	Regulatory signatures of liver regeneration distilled by integrative analysis of mRNA, histone methylation, and proteomics. Journal of Biological Chemistry, 2017, 292, 8019-8037.	1.6	16
43	Iron-heme-Bach1 axis is involved in erythroblast adaptation to iron deficiency. Haematologica, 2017, 102, 454-465.	1.7	21
44	The mTOR-Bach2 Cascade Controls Cell Cycle and Class Switch Recombination during B Cell Differentiation. Molecular and Cellular Biology, 2017, 37, .	1.1	26
45	Increase in proapoptotic activity of inhibitory <scp>PAS</scp> domain protein via phosphorylation by <scp>MK</scp> 2. FEBS Journal, 2017, 284, 4115-4127.	2.2	6
46	Inflammatory responses induce an identity crisis of alveolar macrophages, leading to pulmonary alveolar proteinosis. Journal of Biological Chemistry, 2017, 292, 18098-18112.	1.6	14
47	Frequent downregulation of <scp>BTB</scp> and <scp>CNC</scp> homology 2 expression in Epstein–Barr virusâ€positive diffuse large Bâ€cell lymphoma. Cancer Science, 2017, 108, 1071-1079.	1.7	4
48	Reductions in the mitochondrial ABC transporter Abcb10 affect the transcriptional profile of heme biosynthesis genes. Journal of Biological Chemistry, 2017, 292, 16284-16299.	1.6	28
49	S-Adenosylmethionine Synthesis Is Regulated by Selective N6-Adenosine Methylation and mRNA Degradation Involving METTL16 and YTHDC1. Cell Reports, 2017, 21, 3354-3363.	2.9	240
50	Actin Family Proteins in the Human INO80 Chromatin Remodeling Complex Exhibit Functional Roles in the Induction of Heme Oxygenase-1 with Hemin. Frontiers in Genetics, 2017, 8, 17.	1.1	6
51	Bach2 represses the AP-1-driven induction of interleukin-2 gene transcription in CD4 ⁺ T cells. BMB Reports, 2017, 50, 472-477.	1.1	10
52	Collagen V Is a Potential Substrate for Clostridial Collagenase G in Pancreatic Islet Isolation. Journal of Diabetes Research, 2016, 2016, 1-8.	1.0	13
53	Genetic complementation analysis showed distinct contributions of the Nâ€ŧerminal tail of H2A.Z to epigenetic regulations. Genes To Cells, 2016, 21, 122-135.	0.5	15
54	Genomewide approaches for <scp>BACH</scp> 1 target genes in mouse embryonic fibroblasts showed <scp>BACH</scp> 1â€ <i>Pparg</i> pathway in adipogenesis. Genes To Cells, 2016, 21, 553-567.	0.5	22

#	Article	IF	CITATIONS
55	The double knockout of Bach1 and Bach2 in mice reveals shared compensatory mechanisms in regulating alveolar macrophage function and lung surfactant homeostasis. Journal of Biochemistry, 2016, 160, 333-344.	0.9	20
56	Mechanism governing heme synthesis reveals a GATA factor/heme circuit that controls differentiation. EMBO Reports, 2016, 17, 249-265.	2.0	55
57	Multifunctional human transcriptional coactivator protein <scp>PC</scp> 4 is a substrate of Aurora kinases and activates the Aurora enzymes. FEBS Journal, 2016, 283, 968-985.	2.2	13
58	BACH2 regulates CD8+ T cell differentiation by controlling access of AP-1 factors to enhancers. Nature Immunology, 2016, 17, 851-860.	7.0	221
59	MiR-196a regulates heme oxygenase-1 by silencing Bach1 in the neonatal mouse lung. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 311, L400-L411.	1.3	25
60	The Tohoku Medical Megabank Project: Design and Mission. Journal of Epidemiology, 2016, 26, 493-511.	1.1	236
61	Charge-state-distribution analysis of Bach2 intrinsically disordered heme binding region. Journal of Biochemistry, 2016, 160, 291-298.	0.9	13
62	Epigenetic Regulation of the Blimp-1 Gene (Prdm1) in B Cells Involves Bach2 and Histone Deacetylase 3. Journal of Biological Chemistry, 2016, 291, 6316-6330.	1.6	60
63	Genetic heterogeneity in 26 infants with a hypomyelinating leukodystrophy. Human Genetics, 2016, 135, 89-98.	1.8	26
64	The Transcription Factor Bach2 Is Phosphorylated at Multiple Sites in Murine B Cells but a Single Site Prevents Its Nuclear Localization. Journal of Biological Chemistry, 2016, 291, 1826-1840.	1.6	29
65	Orchestration of B lymphoid cells and their inner myeloid by Bach. Current Opinion in Immunology, 2016, 39, 136-142.	2.4	17
66	High Fractional Occupancy of a Tandem Maf Recognition Element and Its Role in Long-Range β-Globin Gene Regulation. Molecular and Cellular Biology, 2016, 36, 238-250.	1.1	8
67	The Mediator Subunit MED16 Transduces NRF2-Activating Signals into Antioxidant Gene Expression. Molecular and Cellular Biology, 2016, 36, 407-420.	1.1	64
68	Synergistic Effect of Neutral Protease and Clostripain on Rat Pancreatic Islet Isolation. Transplantation, 2015, 99, 1349-1355.	0.5	20
69	Bach1 deficiency reduces severity of osteoarthritis through upregulation of heme oxygenase-1. Arthritis Research and Therapy, 2015, 17, 285.	1.6	65
70	Mitochondrial function provides instructive signals for activation-induced B-cell fates. Nature Communications, 2015, 6, 6750.	5.8	138
71	Heme binds to an intrinsically disordered region of Bach2 and alters its conformation. Archives of Biochemistry and Biophysics, 2015, 565, 25-31.	1.4	31
72	The artificial loss of Runx1 reduces the expression of quiescence-associated transcription factors in CD4 + T lymphocytes. Molecular Immunology, 2015, 68, 223-233.	1.0	8

#	Article	IF	CITATIONS
73	<i>Bach1</i> Deficiency and Accompanying Overexpression of Heme Oxygenase-1 Do Not Influence Aging or Tumorigenesis in Mice. Oxidative Medicine and Cellular Longevity, 2014, 2014, 1-12.	1.9	20
74	Heme regulates gene expression by triggering Crm1â€dependent nuclear export of Bach1. EMBO Journal, 2014, 33, 1727-1727.	3.5	1
75	Heme-Mediated SPI-C Induction Promotes Monocyte Differentiation into Iron-Recycling Macrophages. Cell, 2014, 156, 1223-1234.	13.5	359
76	The transcription repressors Bach2 and Bach1 promote B cell development by repressing the myeloid program. Nature Immunology, 2014, 15, 1171-1180.	7.0	97
77	The C113D Mutation in Human Pin1 Causes Allosteric Structural Changes in the Phosphate Binding Pocket of the PPlase Domain through the Tug of War in the Dual-Histidine Motif. Biochemistry, 2014, 53, 5568-5578.	1.2	24
78	Validation of multiple single nucleotide variation calls by additional exome analysis with a semiconductor sequencer to supplement data of whole-genome sequencing of a human population. BMC Genomics, 2014, 15, 673.	1.2	10
79	Orchestration of plasma cell differentiation by Bach2 and its gene regulatory network. Immunological Reviews, 2014, 261, 116-125.	2.8	72
80	Association between BACH 2 expression and clinical prognosis in diffuse large Bâ€cell lymphoma. Cancer Science, 2014, 105, 437-444.	1.7	17
81	Hemopexin-dependent heme uptake via endocytosis regulates the Bach1 transcription repressor and heme oxygenase gene activation. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 2351-2360.	1.1	16
82	Collagenase H is Crucial for Isolation of Rat Pancreatic Islets. Cell Transplantation, 2014, 23, 1187-1198.	1.2	26
83	Wearing Red for Signaling: The Heme-Bach Axis in Heme Metabolism, Oxidative Stress Response and Iron Immunology. Tohoku Journal of Experimental Medicine, 2014, 232, 229-253.	0.5	92
84	Solution Structure of Clostridial Collagenase H and Its Calcium-Dependent Global Conformation Change. Biophysical Journal, 2013, 104, 1538-1545.	0.2	18
85	BACH2 mediates negative selection and p53-dependent tumor suppression at the pre-B cell receptor checkpoint. Nature Medicine, 2013, 19, 1014-1022.	15.2	100
86	Activation of the SUMO modification system is required for the accumulation of RAD51 at sites containing DNA damage. Journal of Cell Science, 2013, 126, 5284-92.	1.2	56
87	Transforming Growth Factor-β Induces Transcription Factors MafK and Bach1 to Suppress Expression of the Heme Oxygenase-1 Gene. Journal of Biological Chemistry, 2013, 288, 20658-20667.	1.6	50
88	BACH2 represses effector programs to stabilize Treg-mediated immune homeostasis. Nature, 2013, 498, 506-510.	13.7	332
89	Duodenal follicular lymphoma lacks AID but expresses BACH2 and has memory B-cell characteristics. Modern Pathology, 2013, 26, 22-31.	2.9	47
90	Bach1 deficiency protects pancreatic β-cells from oxidative stress injury. American Journal of Physiology - Endocrinology and Metabolism, 2013, 305, E641-E648.	1.8	35

#	Article	IF	CITATIONS
91	Overâ€expression of <scp>BACH</scp> 2 is related to ongoing somatic hypermutation of the immunoglobulin heavy chain gene variable region of <i>de novo</i> diffuse large <scp>B</scp> â€cell lymphoma. Pathology International, 2013, 63, 339-344.	0.6	2
92	Methionine Adenosyltransferase II-dependent Histone H3K9 Methylation at the COX-2 Gene Locus. Journal of Biological Chemistry, 2013, 288, 13592-13601.	1.6	56
93	Bach2 maintains T cells in a naive state by suppressing effector memory-related genes. Proceedings of the United States of America, 2013, 110, 10735-10740.	3.3	119
94	Transcription repressor Bach2 is required for pulmonary surfactant homeostasis and alveolar macrophage function. Journal of Experimental Medicine, 2013, 210, 2191-2204.	4.2	95
95	BTB and CNC Homolog 1 (Bach1) Deficiency Ameliorates TNBS Colitis in Mice. Inflammatory Bowel Diseases, 2013, 19, 740-753.	0.9	66
96	Metabolic Aspects of Epigenome: Coupling of S-Adenosylmethionine Synthesis and Gene Regulation on Chromatin by SAMIT Module. Sub-Cellular Biochemistry, 2013, 61, 105-118.	1.0	25
97	Bach1 as a regulator of mitosis, beyond its transcriptional function. Communicative and Integrative Biology, 2012, 5, 477-479.	0.6	7
98	Corrigendum to "Transcriptionâ€independent role of Bach1 in mitosis through a nuclear exporter Crm1â€dependent mechanism―[FEBS Letters 586 (2012) 448–454]. FEBS Letters, 2012, 586, 3537-3537.	1.3	0
99	Bach1 regulates osteoclastogenesis in a mouse model via both heme oxygenase 1–dependent and heme oxygenase 1–independent pathways. Arthritis and Rheumatism, 2012, 64, 1518-1528.	6.7	25
100	Transcriptionâ€independent role of Bach1 in mitosis through a nuclear exporter Crm1â€dependent mechanism. FEBS Letters, 2012, 586, 448-454.	1.3	14
101	Bach1â€mediated suppression of p53 is inhibited by p19 <scp>^{ARF}</scp> independently of <scp>MDM</scp> 2. Cancer Science, 2012, 103, 897-903.	1.7	8
102	Methionine Adenosyltransferase II Serves asÂa Transcriptional Corepressor of Maf Oncoprotein. Molecular Cell, 2011, 41, 554-566.	4.5	153
103	Heme regulates B-cell differentiation, antibody class switch, and heme oxygenase-1 expression in B cells as a ligand of Bach2. Blood, 2011, 117, 5438-5448.	0.6	83
104	Suppression of indomethacin-induced apoptosis in the small intestine due to Bach1 deficiency. Free Radical Research, 2011, 45, 717-727.	1.5	23
105	Identification of Senescence-Associated Genes and Their Networks Under Oxidative Stress by the Analysis of Bach1. Antioxidants and Redox Signaling, 2011, 14, 2441-2451.	2.5	21
106	3P108 Spectoroscopic analyses of heme-acceptor region of Bach2 protein(Heme proteins,The 48th) Tj ETQq0 0 () rgBT /Ov 0.0	erlock 10 Tf :
107	Bach2 represses plasma cell gene regulatory network in B cells to promote antibody class switch. EMBO Journal, 2010, 29, 4048-4061.	3.5	166

108 MafB as a type I interferon rheostat. Nature Immunology, 2010, 11, 695-696.

7.0 10

#	Article	IF	CITATIONS
109	Bach1 gene ablation reduces steatohepatitis in mouse MCD diet model. Journal of Clinical Biochemistry and Nutrition, 2010, 48, 161-166.	0.6	36
110	Proline cis/trans-Isomerase Pin1 Regulates Peroxisome Proliferator-activated Receptor Î ³ Activity through the Direct Binding to the Activation Function-1 Domain. Journal of Biological Chemistry, 2010, 285, 3126-3132.	1.6	32
111	Bach1-dependent and -independent Regulation of Heme Oxygenase-1 in Keratinocytes. Journal of Biological Chemistry, 2010, 285, 23581-23589.	1.6	20
112	Bach1 Modulates Heme Oxygenase-1 Expression in the Neonatal Mouse Lung. Pediatric Research, 2009, 65, 145-149.	1.1	23
113	Genetic Ablation of Transcription Repressor Bach1 Reduces Neural Tissue Damage and Improves Locomotor Function after Spinal Cord Injury in Mice. Journal of Neurotrauma, 2009, 26, 31-39.	1.7	42
114	Characterization of the cancer chemopreventive NRF2-dependent gene battery in human keratinocytes: demonstration that the KEAP1–NRF2 pathway, and not the BACH1–NRF2 pathway, controls cytoprotection against electrophiles as well as redox-cycling compounds. Carcinogenesis, 2009, 30, 1571-1580.	1.3	273
115	Genetic ablation of the Bach1 gene reduces hyperoxic lung injury in mice: Role of IL-6. Free Radical Biology and Medicine, 2009, 46, 1119-1126.	1.3	28
116	Crystal structure of the Bach1 BTB domain and its regulation of homodimerization. Genes To Cells, 2009, 14, 167-178.	0.5	17
117	Bach1 Deficiency Ameliorates Hepatic Injury in a Mouse Model. Tohoku Journal of Experimental Medicine, 2009, 217, 223-229.	0.5	20
118	Oxidative stress reaction in the meniscus of Bach 1 deficient mice: Potential prevention of meniscal degeneration. Journal of Orthopaedic Research, 2008, 26, 894-898.	1.2	20
119	Bach1 inhibits oxidative stress–induced cellular senescence by impeding p53 function on chromatin. Nature Structural and Molecular Biology, 2008, 15, 1246-1254.	3.6	86
120	The mobility of Bach2 nuclear foci is regulated by SUMO-1 modification. Experimental Cell Research, 2008, 314, 903-913.	1.2	5
121	Regulation of heme oxygenase-1 by transcription factor Bach1 in the mouse brain. Neuroscience Letters, 2008, 440, 160-165.	1.0	22
122	Regulation of the plasma cell transcription factor Blimp-1 gene by Bach2 and Bcl6. International Immunology, 2008, 20, 453-460.	1.8	98
123	Myocardial Protection Against Pressure Overload in Mice Lacking Bach1, a Transcriptional Repressor of Heme Oxygenase-1. Hypertension, 2008, 51, 1570-1577.	1.3	70
124	Ablation of the Bach1 Gene Leads to the Suppression of Atherosclerosis in Bach1 and Apolipoprotein E Double Knockout Mice. Hypertension Research, 2008, 31, 783-792.	1.5	44
125	DNA Damage-Dependent Acetylation and Ubiquitination of H2AX Enhances Chromatin Dynamics. Molecular and Cellular Biology, 2007, 27, 7028-7040.	1.1	327
126	Architecture and Dynamics of the Transcription Factor Network that Regulates B-to-Plasma Cell Differentiation. Journal of Biochemistry, 2007, 141, 783-789.	0.9	52

#	Article	IF	CITATIONS
127	Bach1 Repression of Ferritin and Thioredoxin Reductase1 Is Heme-sensitive in Cells and in Vitro and Coordinates Expression with Heme Oxygenase1, β-Globin, and NADP(H) Quinone (Oxido) Reductase1. Journal of Biological Chemistry, 2007, 282, 34365-34371.	1.6	95
128	Heme Induces Ubiquitination and Degradation of the Transcription Factor Bach1. Molecular and Cellular Biology, 2007, 27, 6962-6971.	1.1	251
129	Co-repressor SMRT and Class II Histone Deacetylases Promote Bach2 Nuclear Retention and Formation of Nuclear Foci that are Responsible for Local Transcriptional Repression. Journal of Biochemistry, 2007, 141, 719-727.	0.9	15
130	Bcr-Abl signaling through the PI-3/S6 kinase pathway inhibits nuclear translocation of the transcription factor Bach2, which represses the antiapoptotic factor heme oxygenase-1. Blood, 2007, 109, 1211-1219.	0.6	53
131	Nuclear positioning of theBACH2 gene in BCR-ABL positive leukemic cells. Genes Chromosomes and Cancer, 2007, 46, 67-74.	1.5	10
132	Bach1, a hemeâ€dependent transcription factor, reveals presence of multiple heme binding sites with distinct coordination structure. IUBMB Life, 2007, 59, 542-551.	1.5	94
133	The Heme-Bach1 Pathway in the Regulation of Oxidative Stress Response and Erythroid Differentiation. Antioxidants and Redox Signaling, 2006, 8, 107-118.	2.5	223
134	Differential gene expression profiling between wild-type and ALAS2-null erythroblasts: Identification of novel heme-regulated genes. Biochemical and Biophysical Research Communications, 2006, 340, 105-110.	1.0	11
135	Down-regulation of heme oxygenase-2 is associated with the increased expression of heme oxygenase-1 in human cell lines. FEBS Journal, 2006, 273, 5333-5346.	2.2	29
136	Genetic ablation of the transcription repressor Bach1 leads to myocardial protection against ischemia/reperfusion in mice. Genes To Cells, 2006, 11, 791-803.	0.5	80
137	β-Carotene and Cigarette Smoke Condensate Regulate Heme Oxygenase-1 and Its Repressor Factor Bach1: Relationship with Cell Growth. Antioxidants and Redox Signaling, 2006, 8, 1069-1080.	2.5	33
138	Plasmacytic Transcription Factor Blimp-1 Is Repressed by Bach2 in B Cells. Journal of Biological Chemistry, 2006, 281, 38226-38234.	1.6	138
139	Heme Oxygenase-1 Gene Enhancer Manifests Silencing Activity in a Chromatin Environment Prior to Oxidative Stress. Antioxidants and Redox Signaling, 2006, 8, 60-67.	2.5	21
140	Transgenic expression of BACH1 transcription factor results in megakaryocytic impairment. Blood, 2005, 105, 3100-3108.	0.6	40
141	Effects of genetic ablation ofbach1upon smooth muscle cell proliferation and atherosclerosis after cuff injury. Genes To Cells, 2005, 10, 277-285.	0.5	53
142	The superoxide-producing NAD(P)H oxidase Nox4 in the nucleus of human vascular endothelial cells. Genes To Cells, 2005, 10, 1139-1151.	0.5	246
143	Prognostic Significance of BACH2 Expression in Diffuse Large B-Cell Lymphoma: A Study of the Osaka Lymphoma Study Group. Journal of Clinical Oncology, 2005, 23, 8012-8017.	0.8	41
144	Dynamic Cytoplasmic Anchoring of the Transcription Factor Bach1 by Intracellular Hyaluronic Acid Binding Protein IHABP. Journal of Biochemistry, 2005, 137, 287-296.	0.9	34

#	Article	IF	CITATIONS
145	Regulation of Heme Oxygenase-1 Gene Transcription: Recent Advances and Highlights from the International Conference (Uppsala, 2003) on Heme Oxygenase. Antioxidants and Redox Signaling, 2004, 6, 924-933.	2.5	98
146	Heme Positively Regulates the Expression of β-Clobin at the Locus Control Region via the Transcriptional Factor Bach1 in Erythroid Cells. Journal of Biological Chemistry, 2004, 279, 5480-5487.	1.6	111
147	Repression of PML Nuclear Body-Associated Transcription by Oxidative Stress-Activated Bach2. Molecular and Cellular Biology, 2004, 24, 3473-3484.	1.1	47
148	Heme regulates the dynamic exchange of Bach1 and NF-E2-related factors in the Maf transcription factor network. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1461-1466.	3.3	309
149	Heme regulates gene expression by triggering Crm1-dependent nuclear export of Bach1. EMBO Journal, 2004, 23, 2544-2553.	3.5	193
150	Dynamic changes in transcription factor complexes during erythroid differentiation revealed by quantitative proteomics. Nature Structural and Molecular Biology, 2004, 11, 73-80.	3.6	199
151	The transcriptional programme of antibody class switching involves the repressor Bach2. Nature, 2004, 429, 566-571.	13.7	249
152	Oxidative Stress Sensor Keap1 Functions as an Adaptor for Cul3-Based E3 Ligase To Regulate Proteasomal Degradation of Nrf2. Molecular and Cellular Biology, 2004, 24, 7130-7139.	1,1	1,878
153	Heme-dependent up-regulation of the α-globin gene expression by transcriptional repressor Bach1 in erythroid cells. Biochemical and Biophysical Research Communications, 2004, 324, 77-85.	1.0	68
154	Regulation of Heme Oxygenase-1 Gene Transcription: Recent Advances and Highlights from the International Conference (Uppsala, 2003) on Heme Oxygenase. Antioxidants and Redox Signaling, 2004, 6, 924-933.	2.5	16
155	Cadmium Induces Nuclear Export of Bach1, a Transcriptional Repressor of Heme Oxygenase-1 Gene. Journal of Biological Chemistry, 2003, 278, 49246-49253.	1.6	145
156	Small Maf Compound Mutants Display Central Nervous System Neuronal Degeneration, Aberrant Transcription, and Bach Protein Mislocalization Coincident with Myoclonus and Abnormal Startle Response. Molecular and Cellular Biology, 2003, 23, 1163-1174.	1.1	46
157	Bach1 Functions as a Hypoxia-inducible Repressor for the Heme Oxygenase-1 Gene in Human Cells. Journal of Biological Chemistry, 2003, 278, 9125-9133.	1.6	238
158	B-cell–specific transcription factor BACH2 modifies the cytotoxic effects of anticancer drugs. Blood, 2003, 102, 3317-3322.	0.6	44
159	Interaction and Cooperation of mi Transcription Factor (MITF) and Myc-associated Zinc-finger Protein-related Factor (MAZR) for Transcription of Mouse Mast Cell Protease 6 Gene. Journal of Biological Chemistry, 2002, 277, 8566-8571.	1.6	34
160	Expression of the Oxidative Stress-Regulated Transcription Factor Bach2 in Differentiating Neuronal Cells. Journal of Biochemistry, 2002, 132, 427-431.	0.9	25
161	Heme-Regulated Transcription Factor Bach1 Journal of Health Science, 2002, 48, 1-6.	0.9	8
162	Activation of Maf/AP-1 Repressor Bach2 by Oxidative Stress Promotes Apoptosis and Its Interaction with Promyelocytic Leukemia Nuclear Bodies. Journal of Biological Chemistry, 2002, 277, 20724-20733.	1.6	81

KAZUHIKO IGARASHI

#	Article	IF	CITATIONS
163	Hemoprotein Bach1 regulates enhancer availability of heme oxygenase-1 gene. EMBO Journal, 2002, 21, 5216-5224.	3.5	567
164	Fission yeast homologues of the B′ subunit of protein phosphatase 2A: multiple roles in mitotic cell division and functional interaction with calcineurin. Genes To Cells, 2001, 6, 455-473.	0.5	18
165	Heme mediates derepression of Maf recognition element through direct binding to transcription repressor Bach1. EMBO Journal, 2001, 20, 2835-2843.	3.5	448
166	Transcription Factor BACH1 Is Recruited to the Nucleus by Its Novel Alternative Spliced Isoform. Journal of Biological Chemistry, 2001, 276, 7278-7284.	1.6	41
167	Activation of Â-major globin gene transcription is associated with recruitment of NF-E2 to the Â-globin LCR and gene promoter. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 10226-10231.	3.3	118
168	Reconstitution of Human β-Globin Locus Control Region Hypersensitive Sites in the Absence of Chromatin Assembly. Molecular and Cellular Biology, 2001, 21, 2629-2640.	1.1	52
169	Cloning and expression of human B cell-specific transcription factor BACH2 mapped to chromosome 6q15. Oncogene, 2000, 19, 3739-3749.	2.6	61
170	Oxidative Stress Abolishes Leptomycin B-sensitive Nuclear Export of Transcription Repressor Bach2 That Counteracts Activation of Maf Recognition Element. Journal of Biological Chemistry, 2000, 275, 15370-15376.	1.6	91
171	Suppression of Rat Thromboxane Synthase Gene Transcription by Peroxisome Proliferator-activated Receptor Î ³ in Macrophages via an Interaction with NRF2. Journal of Biological Chemistry, 2000, 275, 33142-33150.	1.6	92
172	A Combinatorial Code for Gene Expression Generated by Transcription Factor Bach2 and MAZR (MAZ-Related Factor) through the BTB/POZ Domain. Molecular and Cellular Biology, 2000, 20, 1733-1746.	1.1	105
173	Cloning of a Coproporphyrinogen Oxidase Promoter Regulatory Element Binding Protein. Biochemical and Biophysical Research Communications, 2000, 273, 596-602.	1.0	15
174	Molecular Cloning and Functional Characterization of a New Cap'n' Collar Family Transcription Factor Nrf3. Journal of Biological Chemistry, 1999, 274, 6443-6452.	1.6	254
175	Long range interaction of cis-DNA elements mediated by architectural transcription factor Bach1. Genes To Cells, 1999, 4, 643-655.	0.5	85
176	Posttranscriptional Regulation of US11 in Cells Infected with a Herpes Simplex Virus 1 Recombinant Lacking Both 222-bp Domains Containing S-Component Origins of DNA Synthesis. Virology, 1999, 259, 286-298.	1.1	1
177	Identification of Bach2 as a B-cell-specific partner for small Maf proteins that negatively regulate the immunoglobulin heavy chain gene 3' enhancer. EMBO Journal, 1998, 17, 5734-5743.	3.5	162
178	Regulation of NF-E2 Activity in Erythroleukemia Cell Differentiation. Journal of Biological Chemistry, 1998, 273, 5358-5365.	1.6	67
179	Multivalent DNA Binding Complex Generated by Small Maf and Bach1 as a Possible Biochemical Basis for β-Globin Locus Control Region Complex. Journal of Biological Chemistry, 1998, 273, 11783-11790.	1.6	174
180	The world according to Maf. Nucleic Acids Research, 1997, 25, 2953-2959.	6.5	248

11

#	Article	IF	CITATIONS
181	An Nrf2/Small Maf Heterodimer Mediates the Induction of Phase II Detoxifying Enzyme Genes through Antioxidant Response Elements. Biochemical and Biophysical Research Communications, 1997, 236, 313-322.	1.0	3,495
182	Human small Maf proteins form heterodimers with CNC family transcription factors and recognize the NF-E2 motif. Oncogene, 1997, 14, 1901-1910.	2.6	105
183	Abundant Expression of Erythroid Transcription Factor P45 NF-E2 mRNA in Human Peripheral Granurocytes. Biochemical and Biophysical Research Communications, 1996, 219, 760-765.	1.0	16
184	Mesodermal- vs. neuronal-specific expression of MafK is elicited by different promoters. Genes To Cells, 1996, 1, 223-238.	0.5	40
185	Histidine Decarboxylase Expression in Mouse Mast Cell Line P815 Is Induced by Mouse Peritoneal Cavity Incubation. Journal of Biological Chemistry, 1996, 271, 28439-28444.	1.6	31
186	Conditional expression of the ubiquitous transcription factor MafK induces erythroleukemia cell differentiation Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 7445-7449.	3.3	61
187	Activity and Expression of Murine Small Maf Family Protein MafK. Journal of Biological Chemistry, 1995, 270, 7615-7624.	1.6	96
188	Regulation of transcription by dimerization of erythroid factor NF-E2 p45 with small Maf proteins. Nature, 1994, 367, 568-572.	13.7	428
189	E.coliRNA polymerase, deleted in the C-terminal part of its α-subunit, interacts differently with the cAMP-CRP complex at thelacP1 and at thegaP1 promoter. Nucleic Acids Research, 1993, 21, 319-326.	6.5	108
190	Stimulation of the phage λ pL promoter by integration host factor requires the carboxy terminus of the α-subunit of RNA polymerase. Journal of Molecular Biology, 1992, 227, 985-990.	2.0	57
191	Mapping the cAMP receptor protein contact site on the ? subunit of Escherichia coli RNA polymerase. Molecular Microbiology, 1992, 6, 2599-2605.	1.2	123
192	Functional specialization within the α-subunit of Escherichia coli RNA polymerase. Journal of Molecular Biology, 1991, 221, 23-29.	2.0	82
193	Bipartite functional map of the E. coli RNA polymerase α subunit: Involvement of the C-terminal region in transcription activation by cAMP-CRP. Cell, 1991, 65, 1015-1022.	13.5	353
194	Identification of a subunit assembly domain in the alpha subunit of Escherichia coli RNA polymerase. Journal of Molecular Biology, 1991, 218, 1-6.	2.0	85
195	Sequence analysis of two temperature-sensitive mutations in the alpha subunit gene (rpoA) ofEscherichia coliRNA polymerase. Nucleic Acids Research, 1990, 18, 5945-5948.	6.5	65
196	Promoter selectivity ofEscherichia coliRNA polymerase: omega factor is responsible for the ppGpp sensitivity. Nucleic Acids Research, 1989, 17, 8755-8765.	6.5	71
197	Expression of the insulinoma gene rig during liver regeneration and in primary cultured hepatocytes. Biochemical and Biophysical Research Communications, 1988, 150, 1302-1308.	1.0	11