Christophe Périn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3577908/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A new comprehensive annotation of leucineâ€rich repeatâ€containing receptors in rice. Plant Journal, 2021, 108, 492-508.	5.7	7
2	A fast, efficient and high-throughput procedure involving laser microdissection and RT droplet digital PCR for tissue-specific expression profiling of rice roots. BMC Molecular and Cell Biology, 2020, 21, 92.	2.0	3
3	Beyond Seek and Destroy: how to Generate Allelic Series Using Genome Editing Tools. Rice, 2020, 13, 5.	4.0	7
4	Rice auxin influx carrier OsAUX1 facilitates root hair elongation in response to low external phosphate. Nature Communications, 2018, 9, 1408.	12.8	110
5	Sub-cellular markers highlight intracellular dynamics of membrane proteins in response to abiotic treatments in rice. Rice, 2018, 11, 23.	4.0	10
6	A protocol combining multiphoton microscopy and propidium iodide for deep 3D root meristem imaging in rice: application for the screening and identification of tissue-specific enhancer trap lines. Plant Methods, 2018, 14, 96.	4.3	4
7	SHR overexpression induces the formation of supernumerary cell layers with cortex cell identity in rice. Developmental Biology, 2017, 425, 1-7.	2.0	30
8	Production of lowâ€Cs ⁺ rice plants by inactivation of the K ⁺ transporter Os <scp>HAK</scp> 1 with the <scp>CRISPR</scp> â€Cas system. Plant Journal, 2017, 92, 43-56.	5.7	161
9	Dynamic Regulation of Auxin Response during Rice Development Revealed by Newly Established Hormone Biosensor Markers. Frontiers in Plant Science, 2017, 8, 256.	3.6	41
10	New Insights on Leucine-Rich Repeats Receptor-Like Kinase Orthologous Relationships in Angiosperms. Frontiers in Plant Science, 2017, 08, 381.	3.6	54
11	Genome-wide association mapping for root cone angle in rice. Rice, 2017, 10, 45.	4.0	25
12	Root cone angle is enlarged in docs1 LRR-RLK mutants in rice. Rice, 2017, 10, 50.	4.0	11
13	The phenome analysis of mutant alleles in Leucine-Rich Repeat Receptor-Like Kinase genes in rice reveals new potential targets for stress tolerant cereals. Plant Science, 2016, 242, 240-249.	3.6	27
14	Immunoprofiling of Rice Root Cortex Reveals Two Cortical Subdomains. Frontiers in Plant Science, 2015, 6, 1139.	3.6	22
15	The roots of future rice harvests. Rice, 2014, 7, 29.	4.0	57
16	A plausible mechanism, based upon SHORT-ROOT movement, for regulating the number of cortex cell layers in roots. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16184-16189.	7.1	85
17	PHIV-RootCell: a supervised image analysis tool for rice root anatomical parameter quantification. Frontiers in Plant Science, 2014, 5, 790.	3.6	19
18	Gene transfer: A tool for the functional analysis of the rice genome. Cahiers Agricultures, 2013, 22, 484-493.	0.9	1

Christophe Périn

#	Article	IF	CITATIONS
19	Dissecting the biological bases of traits of interest in rice: Architecture and development of the root system. Cahiers Agricultures, 2013, 22, 475-483.	0.9	6
20	Surfing along the root ground tissue gene network. Developmental Biology, 2012, 365, 14-22.	2.0	39
21	Inâ€depth molecular and phenotypic characterization in a rice insertion line library facilitates gene identification through reverse and forward genetics approaches. Plant Biotechnology Journal, 2012, 10, 555-568.	8.3	20
22	Leucine-Rich repeat receptor kinases are sporadically distributed in eukaryotic genomes. BMC Evolutionary Biology, 2011, 11, 367.	3.2	45
23	GreenPhylDB v2.0: comparative and functional genomics in plants. Nucleic Acids Research, 2011, 39, D1095-D1102.	14.5	106
24	Complex Regulation of Two Target Genes Encoding SPX-MFS Proteins by Rice miR827 in Response to Phosphate Starvation. Plant and Cell Physiology, 2010, 51, 2119-2131.	3.1	188
25	Genetic control of root development in rice, the model cereal. Trends in Plant Science, 2010, 15, 219-226.	8.8	287
26	OryGenesDB 2008 update: database interoperability for functional genomics of rice. Nucleic Acids Research, 2009, 37, D992-D995.	14.5	34
27	Molecular Genetics of Rice Root Development. Rice, 2009, 2, 15-34.	4.0	186
28	Phylogenomics of plant genomes: a methodology for genome-wide searches for orthologs in plants. BMC Genomics, 2008, 9, 183.	2.8	18
29	Modulating Rice Stress Tolerance by Transcription Factors. Biotechnology and Genetic Engineering Reviews, 2008, 25, 381-404.	6.2	49
30	Oryza Tag Line , a phenotypic mutant database for the Génoplante rice insertion line library. Nucleic Acids Research, 2008, 36, D1022-D1027.	14.5	60
31	GreenPhylDB: a database for plant comparative genomics. Nucleic Acids Research, 2007, 36, D991-D998.	14.5	70
32	Model-assisted physiological analysis of Phyllo, a rice architectural mutant. Functional Plant Biology, 2007, 34, 11.	2.1	20
33	Informatics Resources for Rice Functional Genomics. , 2007, , 355-394.		2
34	OryGenesDB: a database for rice reverse genetics. Nucleic Acids Research, 2006, 34, D736-D740.	14.5	82
35	High throughput T-DNA insertion mutagenesis in rice: a first step towardsin silicoreverse genetics. Plant Journal, 2004, 39, 450-464.	5.7	231
36	Linkage map of Cucumis melo including phenotypic traits and sequence-characterized genes. Genome, 2003, 46, 761-773.	2.0	69

Christophe Périn

#	Article	IF	CITATIONS
37	Molecular and Genetic Characterization of a Non-Climacteric Phenotype in Melon Reveals Two Loci Conferring Altered Ethylene Response in Fruit. Plant Physiology, 2002, 129, 300-309.	4.8	138
38	Resistance gene homologues in melon are linked to genetic loci conferring disease and pest resistance. Theoretical and Applied Genetics, 2002, 104, 1055-1063.	3.6	90
39	A reference map of Cucumis melo based on two recombinant inbred line populations. Theoretical and Applied Genetics, 2002, 104, 1017-1034.	3.6	183
40	Genetic control of fruit shape acts prior to anthesis in melon (Cucumis melo L.). Molecular Genetics and Genomics, 2002, 266, 933-941.	2.1	88
41	CONSTRUCTION OF A REFERENCE GENETIC MAP OF MELON. Acta Horticulturae, 2000, , 367-374.	0.2	11
42	IDENTIFICATION OF QTLS CONTRIBUTING TO RESISTANCE TO DIFFERENT STRAINS OF CUCUMBER MOSAIC CUCUMOVIRUS IN MELON. Acta Horticulturae, 2000, , 391-398.	0.2	39
43	ETHYLENE-REGULATED GENES AND CLARIFICATION OF THE ROLE OF ETHYLENE IN THE REGULATION OF RIPENING AND QUALITY IN CANTALOUPE MELON FRUIT. Acta Horticulturae, 2000, , 499-509.	0.2	2
44	Expression of an A20/AN1 Stress-Associated Protein from Aeluropus littoralis in Rice Deregulates Stress-Related Genes. Journal of Plant Growth Regulation, 0, , 1.	5.1	4