Franco Pestilli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3577769/publications.pdf Version: 2024-02-01

	172457	161849
3,831	29	54
citations	h-index	g-index
117	117	3798
docs citations	times ranked	citing authors
	3,831 citations 117 docs citations	3,831 29 citations h-index 117 117 docs citations 117 times ranked

#	Article	IF	CITATIONS
1	Attention enhances contrast sensitivity at cued and impairs it at uncued locations. Vision Research, 2005, 45, 1867-1875.	1.4	227
2	Evaluation and statistical inference for human connectomes. Nature Methods, 2014, 11, 1058-1063.	19.0	225
3	The vertical occipital fasciculus: A century of controversy resolved by in vivo measurements. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5214-23.	7.1	221
4	Transient Attention Enhances Perceptual Performance and fMRI Response in Human Visual Cortex. Neuron, 2005, 45, 469-477.	8.1	178
5	Attentional Enhancement via Selection and Pooling of Early Sensory Responses in Human Visual Cortex. Neuron, 2011, 72, 832-846.	8.1	170
6	Functionally Defined White Matter Reveals Segregated Pathways in Human Ventral Temporal Cortex Associated with Category-Specific Processing. Neuron, 2015, 85, 216-227.	8.1	161
7	Attention trades off spatial acuity. Vision Research, 2009, 49, 735-745.	1.4	139
8	A Major Human White Matter Pathway Between Dorsal and Ventral Visual Cortex. Cerebral Cortex, 2016, 26, 2205-2214.	2.9	139
9	A massive 7T fMRI dataset to bridge cognitive neuroscience and artificial intelligence. Nature Neuroscience, 2022, 25, 116-126.	14.8	129
10	Human blindsight is mediated by an intact geniculo-extrastriate pathway. ELife, 2015, 4, .	6.0	119
11	Methods for analysis of brain connectivity: An IFCN-sponsored review. Clinical Neurophysiology, 2019, 130, 1833-1858.	1.5	106
12	How do attention and adaptation affect contrast sensitivity?. Journal of Vision, 2007, 7, 9.	0.3	102
13	Ensemble Tractography. PLoS Computational Biology, 2016, 12, e1004692.	3.2	101
14	A population-coding model of attention's influence on contrast response: Estimating neural effects from psychophysical data. Vision Research, 2009, 49, 1144-1153.	1.4	95
15	Tractography dissection variability: What happens when 42 groups dissect 14 white matter bundles on the same dataset?. NeuroImage, 2021, 243, 118502.	4.2	94
16	White-Matter Tract Connecting Anterior Insula to Nucleus Accumbens Correlates with Reduced Preference for Positively Skewed Gambles. Neuron, 2016, 89, 63-69.	8.1	84
17	Occipital White Matter Tracts in Human and Macaque. Cerebral Cortex, 2017, 27, 3346-3359.	2.9	73
18	The open diffusion data derivatives, brain data upcycling via integrated publishing of derivatives and reproducible open cloud services. Scientific Data, 2019, 6, 69.	5.3	69

#	Article	IF	CITATIONS
19	Evaluating the Accuracy of Diffusion MRI Models in White Matter. PLoS ONE, 2015, 10, e0123272.	2.5	67
20	The visual white matter: The application of diffusion MRI and fiber tractography to vision science. Journal of Vision, 2017, 17, 4.	0.3	66
21	White Matter Consequences of Retinal Receptor and Ganglion Cell Damage. Investigative Ophthalmology and Visual Science, 2014, 55, 6976-6986.	3.3	65
22	Tractostorm: The what, why, and how of tractography dissection reproducibility. Human Brain Mapping, 2020, 41, 1859-1874.	3.6	59
23	Bundle analytics, a computational framework for investigating the shapes and profiles of brain pathways across populations. Scientific Reports, 2020, 10, 17149.	3.3	57
24	Altered white matter in early visual pathways of humans with amblyopia. Vision Research, 2015, 114, 48-55.	1.4	51
25	Associative white matter connecting the dorsal and ventral posterior human cortex. Brain Structure and Function, 2019, 224, 2631-2660.	2.3	51
26	Saccade Planning Evokes Topographically Specific Activity in the Dorsal and Ventral Streams. Journal of Neuroscience, 2015, 35, 245-252.	3.6	48
27	Functionally defined white matter of the macaque monkey brain reveals a dorso-ventral attention network. ELife, 2019, 8, .	6.0	43
28	Open science, communal culture, and women's participation in the movement to improve science. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24154-24164.	7.1	36
29	Differing effects of attention in single-units and populations are well predicted by heterogeneous tuning and the normalization model of attention. Frontiers in Computational Neuroscience, 2014, 8, 12.	2.1	35
30	Microstructural properties of the vertical occipital fasciculus explain the variability in human stereoacuity. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12289-12294.	7.1	34
31	The human endogenous attentional control network includes a ventro-temporal cortical node. Nature Communications, 2021, 12, 360.	12.8	34
32	White Matter Diffusion of Major Fiber Tracts Implicated in Autism Spectrum Disorder. Brain Connectivity, 2016, 6, 691-699.	1.7	33
33	Multidimensional encoding of brain connectomes. Scientific Reports, 2017, 7, 11491.	3.3	33
34	Age-related macular degeneration affects the optic radiation white matter projecting to locations of retinal damage. Brain Structure and Function, 2018, 223, 3889-3900.	2.3	33
35	Diffusivity and quantitative T1 profile of human visual white matter tracts after retinal ganglion cell damage. NeuroImage: Clinical, 2019, 23, 101826.	2.7	29
36	International data governance for neuroscience. Neuron, 2022, 110, 600-612.	8.1	28

#	Article	IF	CITATIONS
37	DTI measures identify mild and moderate TBI cases among patients with complex health problems: A receiver operating characteristic analysis of U.S. veterans. NeuroImage: Clinical, 2017, 16, 1-16.	2.7	27
38	Classifyber, a robust streamline-based linear classifier for white matter bundle segmentation. NeuroImage, 2021, 224, 117402.	4.2	26
39	A review of the mechanisms by which attentional feedback shapes visual selectivity. Brain Structure and Function, 2015, 220, 1237-1250.	2.3	24
40	Face percept formation in human ventral temporal cortex. Journal of Neurophysiology, 2017, 118, 2614-2627.	1.8	23
41	Anatomy of nerve fiber bundles at micrometer-resolution in the vervet monkey visual system. ELife, 2020, 9, .	6.0	23
42	Framework for shape analysis of white matter fiber bundles. NeuroImage, 2018, 167, 466-477.	4.2	20
43	Self-portraits of the brain: cognitive science, data visualization, and communicating brain structure and function. Trends in Cognitive Sciences, 2015, 19, 462-474.	7.8	19
44	Computational neuroanatomy of human stratum proprium of interparietal sulcus. Brain Structure and Function, 2018, 223, 489-507.	2.3	19
45	Quantifying nerve decussation abnormalities in the optic chiasm. NeuroImage: Clinical, 2019, 24, 102055.	2.7	19
46	Age dependency and lateralization in the three branches of the human superior longitudinal fasciculus. Cortex, 2021, 139, 116-133.	2.4	18
47	Test-retest measurements and digital validation for in vivo neuroscience. Scientific Data, 2015, 2, 140057.	5.3	17
48	Comparing fMRI activation during smooth pursuit eye movements among contact sport athletes, non-contact sport athletes, and non-athletes. NeuroImage: Clinical, 2018, 18, 413-424.	2.7	17
49	Inter-individual Differences in Occipital Alpha Oscillations Correlate with White Matter Tissue Properties of the Optic Radiation. ENeuro, 2020, 7, ENEURO.0224-19.2020.	1.9	17
50	A taxonomy of the brain's white matter: twenty-one major tracts for the 21st century. Cerebral Cortex, 2022, 32, 4524-4548.	2.9	17
51	Shape-Attributes of Brain Structures as Biomarkers for Alzheimer's Disease. Journal of Alzheimer's Disease, 2017, 56, 287-295.	2.6	16
52	Human white matter and knowledge representation. PLoS Biology, 2018, 16, e2005758.	5.6	16
53	Comparative neuroanatomy: Integrating classic and modern methods to understand association fibers connecting dorsal and ventral visual cortex. Neuroscience Research, 2019, 146, 1-12.	1.9	16
54	Open data on industry payments to healthcare providers reveal potential hidden costs to the public. Nature Communications, 2019, 10, 4314.	12.8	15

#	Article	IF	CITATIONS
55	Spatial organization of occipital white matter tracts in the common marmoset. Brain Structure and Function, 2020, 225, 1313-1326.	2.3	14
56	V1 Projection Zone Signals in Human Macular Degeneration Depend on Task Despite Absence of Visual Stimulus. Current Biology, 2021, 31, 406-412.e3.	3.9	14
57	In defense of decentralized research data management. Neuroforum, 2021, .	0.3	14
58	The visual white matter connecting human area prostriata and the thalamus is retinotopically organized. Brain Structure and Function, 2020, 225, 1839-1853.	2.3	13
59	Visual Information Routes in the Posterior Dorsal and Ventral Face Network Studied with Intracranial Neurophysiology and White Matter Tract Endpoints. Cerebral Cortex, 2022, 32, 342-366.	2.9	11
60	White matter alterations in glaucoma and monocular blindness differ outside the visual system. Scientific Reports, 2021, 11, 6866.	3.3	11
61	Perspectives given by structural connectivity bridge the gap between structure and function. Brain Structure and Function, 2020, 225, 1189-1192.	2.3	10
62	Triple visual hemifield maps in a case of optic chiasm hypoplasia. NeuroImage, 2020, 215, 116822.	4.2	10
63	Predicting Neural Response Latency of the Human Early Visual Cortex from MRI-Based Tissue Measurements of the Optic Radiation. ENeuro, 2020, 7, ENEURO.0545-19.2020.	1.9	10
64	Mapping the Microstructure and Striae of the Human Olfactory Tract with Diffusion MRI. Journal of Neuroscience, 2022, 42, 58-68.	3.6	10
65	Development of white matter tracts between and within the dorsal and ventral streams. Brain Structure and Function, 2022, 227, 1457-1477.	2.3	10
66	Speed discrimination predicts word but not pseudo-word reading rate in adults and children. Brain and Language, 2014, 138, 27-37.	1.6	7
67	CHIASM, the human brain albinism and achiasma MRI dataset. Scientific Data, 2021, 8, 308.	5.3	6
68	ReAl-LiFE: Accelerating the Discovery of Individualized Brain Connectomes on GPUs. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33, 630-638.	4.9	5
69	LiFE: Linear Fascicle Evaluation a new technology to study visual connectomes. Journal of Vision, 2014, 14, 1122-1122.	0.3	5
70	Collegiate athlete brain data for white matter mapping and network neuroscience. Scientific Data, 2021, 8, 56.	5.3	4
71	Multi-Contrast Magnetic Resonance Imaging of Visual White Matter Pathways in Patients With Glaucoma. , 2022, 63, 29.		4
72	Anatomically-Informed Multiple Linear Assignment Problems for White Matter Bundle Segmentation. , 2019, , .		3

#	Article	IF	CITATIONS
73	Shape Analysis of White Matter Tracts via the Laplace-Beltrami Spectrum. Lecture Notes in Computer Science, 2018, , 195-206.	1.3	3
74	Functional Imaging with Reinforcement, Eyetracking, and Physiological Monitoring. Journal of Visualized Experiments, 2008, , .	0.3	2
75	MPI-LiFE: Designing High-Performance Linear Fascicle Evaluation of Brain Connectome with MPI. , 2017, , \cdot		1
76	A single mode of population covariation associates brain networks structure and behavior and predicts individual subjects' age. Communications Biology, 2021, 4, 943.	4.4	1
77	GPU-accelerated connectome discovery at scale. Nature Computational Science, 2022, 2, 298-306.	8.0	1
78	Using fMRI to characterize how cortex represents limb motions. BMC Neuroscience, 2014, 15, .	1.9	0
79	Chiasmal malformations dataset: a unique neuroimaging testbed. Journal of Vision, 2021, 21, 2507.	0.3	Ο
80	Measuring and modelling of diffusion and white-matter tracts. Journal of Vision, 2014, 14, 1461-1461.	0.3	0
81	Functionally-defined white matter selectively predicts face- and place-processing performance. Journal of Vision, 2014, 14, 602-602.	0.3	Ο
82	A large white matter bundle connecting area prostriata and visual thalamus in humans. Journal of Vision, 2020, 20, 1233.	0.3	0
83	Understanding structure–function relationships in the mammalian visual system: part two. Brain Structure and Function, 2022	2.3	Ο