
Takahiro Mise

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3577747/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Novel device structure for Cu(In,Ga)Se2 thin film solar cells using transparent conducting oxide back and front contacts. Solar Energy, 2004, 77, 739-747.	6.1	235
2	Cu ₂ ZnSnS ₄ photovoltaic cell with improved efficiency fabricated by highâ€ŧemperature annealing after CdS bufferâ€ŀayer deposition. Progress in Photovoltaics: Research and Applications, 2017, 25, 14-22.	8.1	97
3	Low temperature growth and properties of Cu–In–Te based thin films for narrow bandgap solar cells. Thin Solid Films, 2010, 518, 5604-5609.	1.8	46
4	Superstrate-Type Cu(In, Ga)Se2 Thin Film Solar Cells with ZnO Buffer Layers. Japanese Journal of Applied Physics, 1998, 37, L499-L501.	1.5	42
5	Microstructural properties of (In,Ga)2Se3 precursor layers for efficient CIGS thin-film solar cells. Solar Energy Materials and Solar Cells, 2009, 93, 1000-1003.	6.2	40
6	Wide-Gap Cu(In,Ga)Se ₂ Solar Cells with Zn(O,S) Buffer Layers Prepared by Atomic Layer Deposition. Japanese Journal of Applied Physics, 2012, 51, 10NC15.	1.5	21
7	Photovoltaic properties of Cu ₂ ZnSnS ₄ cells fabricated using ZnSnO and ZnSnO/CdS buffer layers. Japanese Journal of Applied Physics, 2016, 55, 112302.	1.5	21
8	Improving the photovoltaic performance of coâ€evaporated Cu ₂ ZnSnS ₄ thinâ€film solar cells by incorporation of sodium from NaF layers. Progress in Photovoltaics: Research and Applications, 2016, 24, 1009-1015.	8.1	18
9	Wide-Gap Cu(In,Ga)Se ₂ Solar Cells with Zn(O,S) Buffer Layers Prepared by Atomic Layer Deposition. Japanese Journal of Applied Physics, 2012, 51, 10NC15.	1.5	15
10	Effects of substrate temperature and film thickness on properties of CuIn3Te5 thin films and solar cells. Journal of Applied Physics, 2011, 110, 014504.	2.5	13
11	Narrowâ€bandgap CuIn ₃ Te ₅ thinâ€film solar cells. Progress in Photovoltaics: Research and Applications, 2013, 21, 754-759.	8.1	13
12	Microstructural and optical properties of CuIn3Te5 thin films for solar cells. Solar Energy Materials and Solar Cells, 2010, 94, 1132-1136.	6.2	12
13	Effect of tellurium deposition rate on the properties of Cu–In–Te based thin films and solar cells. Journal of Crystal Growth, 2011, 314, 76-80.	1.5	10
14	CIGS thin film solar cells on polyimide foils. , 2010, , .		9
15	Transparent Conducting ZnO:B Thin Films Grown by Ultraviolet Light Assisted Metal Organic Chemical Vapor Deposition Using Triethylboron for Cu(In,Ga)Se\$_{2}\$ Solar Cells. Japanese Journal of Applied Physics, 2012, 51, 10NC09.	1.5	9
16	<i>In situ</i> process monitoring during multistage coevaporation of Cu2ZnSnS4 thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2015, 33, .	2.1	9
17	Influence of chemical composition on the properties of directly coevaporated Cu–Zn–Sn–S-based thin films and solar cells. Japanese Journal of Applied Physics, 2016, 55, 012303.	1.5	7
18	Transparent Conducting ZnO:B Thin Films Grown by Ultraviolet Light Assisted Metal Organic Chemical Vapor Deposition Using Triethylboron for Cu(In,Ga)Se2Solar Cells. Japanese Journal of Applied Physics, 2012, 51, 10NC09.	1.5	7

TAKAHIRO MISE

#	Article	IF	CITATIONS
19	Effects of Antimony Doping on Cu(In _{1-<i>x</i>} ,Ga _{<i>x</i>})Se ₂ Thin Films and Solar Cells. Japanese Journal of Applied Physics, 2012, 51, 10NC25.	1.5	7
20	Influence of copper to indium atomic ratio on the properties of Cu–In–Te based thin-film solar cells prepared by low-temperature co-evaporation. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2012, 30, 051202.	2.1	5
21	Effects of Bi Incorporation on Cu(In _{1-x} ,Ga _x)Se ₂ Thin Films and Solar Cells. Japanese Journal of Applied Physics, 2012, 51, 10NC24.	1.5	4
22	Effects of Antimony Doping on Cu(In _{1-x} ,Ga _x)Se ₂ Thin Films and Solar Cells. Japanese Journal of Applied Physics, 2012, 51, 10NC25.	1.5	4
23	Impact of the LAD process on CIGS thin films and solar cells. Conference Record of the IEEE Photovoltaic Specialists Conference, 2008, , .	0.0	1
24	Optical and electrical properties of Cu-In-Te based thin films and solar cells. , 2010, , .		1