
Therese M Jay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3577325/publications.pdf Version: 2024-02-01

Τηέρεςε Μ Ιλν

#	Article	IF	CITATIONS
1	Phenotypical Screening on Neuronal Plasticity in Hippocampal-Prefrontal Cortex Connectivity Reveals an Antipsychotic with a Novel Profile. Cells, 2022, 11, 1181.	4.1	1
2	Dopamine-induced pruning in monocyte-derived-neuronal-like cells (MDNCs) from patients with schizophrenia. Molecular Psychiatry, 2022, 27, 2787-2802.	7.9	11
3	Brain circuits at risk in psychiatric diseases and pharmacological pathways. Therapie, 2021, 76, 75-86.	1.0	2
4	Fluoroethylnormemantine, A Novel Derivative of Memantine, Facilitates Extinction Learning Without Sensorimotor Deficits. International Journal of Neuropsychopharmacology, 2021, 24, 519-531.	2.1	7
5	Biomarkers of resilience and susceptibility in rodent models of stress. , 2020, , 311-321.		2
6	Selective activation of D1 dopamine receptors exerts antidepressant-like activity in rats. Journal of Psychopharmacology, 2020, 34, 1443-1448.	4.0	6
7	Antidepressants Promote and Prevent Cancers. Cancer Investigation, 2020, 38, 572-598.	1.3	4
8	Cognition- and circuit-based dysfunction in a mouse model of 22q11.2 microdeletion syndrome: effects of stress. Translational Psychiatry, 2020, 10, 41.	4.8	18
9	Stress, Cortisol and NR3C1 in At-Risk Individuals for Psychosis: A Mendelian Randomization Study. Frontiers in Psychiatry, 2020, 11, 680.	2.6	3
10	Stress, Cortisol and NR3C1 in At-Risk Individuals for Psychosis: A Mendelian Randomization Study. Frontiers in Psychiatry, 2020, 11, 680.	2.6	3
11	M51 CONVERGENT METHYLOMIC SIGNATURE OF CANNABIS EXPOSURE DURING ADOLESCENCE IN HUMAN BLOOD SAMPLES AND RAT PREFRONTAL AREA. European Neuropsychopharmacology, 2019, 29, S193.	0.7	0
12	Exposure to cannabinoids can lead to persistent cognitive and psychiatric disorders. European Journal of Pain, 2019, 23, 1225-1233.	2.8	37
13	A Resting-State Functional MR Imaging and Spectroscopy Study of the Dorsal Hippocampus in the Chronic Unpredictable Stress Rat Model. Journal of Neuroscience, 2019, 39, 3640-3650.	3.6	28
14	The SIGMA rat brain templates and atlases for multimodal MRI data analysis and visualization. Nature Communications, 2019, 10, 5699.	12.8	73
15	P.542 Epigenetic regulation in the dorsal hippocampus of rats exposed to methylazoxymethanol acetate; a model of schizophrenia. European Neuropsychopharmacology, 2019, 29, S381-S382.	0.7	0
16	The dynamics of stress: a longitudinal MRI study of rat brain structure and connectome. Molecular Psychiatry, 2018, 23, 1998-2006.	7.9	60
17	Transdifferentiation of Human Circulating Monocytes Into Neuronal-Like Cells in 20 Days and Without Reprograming. Frontiers in Molecular Neuroscience, 2018, 11, 323.	2.9	14
18	A Single Exposure to GSM-1800†MHz Signals in the Course of an Acute Neuroinflammatory Reaction can Alter Neuronal Responses and Microglial Morphology in the Rat Primary Auditory Cortex. Neuroscience, 2018, 385, 11-24.	2.3	13

#	Article	IF	CITATIONS
19	White matter changes in microstructure associated with a maladaptive response to stress in rats. Translational Psychiatry, 2017, 7, e1009-e1009.	4.8	27
20	Activation of beta- and alpha-2-adrenoceptors in the basolateral amygdala has opposing effects on hippocampal-prefrontal long-term potentiation. Neurobiology of Learning and Memory, 2017, 137, 163-170.	1.9	14
21	Defining the brain circuits involved in psychiatric disorders: IMI-NEWMEDS. Nature Reviews Drug Discovery, 2017, 16, 1-2.	46.4	35
22	Acute Neuroinflammation Promotes Cell Responses to 1800ÂMHz GSM Electromagnetic Fields in the Rat Cerebral Cortex. Neurotoxicity Research, 2017, 32, 444-459.	2.7	12
23	Clozapine counteracts a ketamine-induced depression of hippocampal-prefrontal neuroplasticity and alters signaling pathway phosphorylation. PLoS ONE, 2017, 12, e0177036.	2.5	22
24	Rats can acquire conditional fear of faint light leaking through the acrylic resin used to mount fiber optic cannulas. Learning and Memory, 2016, 23, 684-688.	1.3	4
25	The hippocampal to prefrontal cortex circuit in mice: a promising electrophysiological signature in models for psychiatric disorders. Brain Structure and Function, 2016, 221, 2385-2391.	2.3	14
26	Dynamic Regulation of AMPAR Phosphorylation In Vivo Following Acute Behavioral Stress. Cellular and Molecular Neurobiology, 2016, 36, 1331-1342.	3.3	19
27	Chronic cannabinoid exposure during adolescence leads to long-term structural and functional changes in the prefrontal cortex. European Neuropsychopharmacology, 2016, 26, 55-64.	0.7	66
28	Salivary cortisol in early psychosis: New findings and meta-analysis. Psychoneuroendocrinology, 2016, 63, 262-270.	2.7	76
29	Acute tianeptine treatment selectively modulates neuronal activation in the central nucleus of the amygdala and attenuates fear extinction. Molecular Psychiatry, 2015, 20, 1420-1427.	7.9	5
30	Hyper-responsivity to stress in rats is associated with a large increase in amygdala volume. A 7 T MRI study. European Neuropsychopharmacology, 2015, 25, 828-835.	0.7	15
31	Behavioral stress induces regionally-distinct shifts of brain mineralocorticoid and glucocorticoid receptor levels. Frontiers in Behavioral Neuroscience, 2014, 8, 19.	2.0	35
32	Long-term consequences of adolescent cannabinoid exposure in adult psychopathology. Frontiers in Neuroscience, 2014, 8, 361.	2.8	108
33	Psychotomimetic effects at initiation of cannabis use are associated with cannabinoid receptor 1 (CNR1) variants in healthy students. Molecular Psychiatry, 2014, 19, 402-403.	7.9	14
34	Limbic versus cognitive target for deep brain stimulation in treatment-resistant depression: Accumbens more promising than caudate. European Neuropsychopharmacology, 2014, 24, 1229-1239.	0.7	56
35	Paraventricular Hypothalamic Regulation of Trigeminovascular Mechanisms Involved in Headaches. Journal of Neuroscience, 2013, 33, 8827-8840.	3.6	120
36	The hippocampal–prefrontal pathway: The weak link in psychiatric disorders?. European Neuropsychopharmacology, 2013, 23, 1165-1181.	0.7	354

#	Article	IF	CITATIONS
37	Long-term cognitive impairments induced by chronic cannabinoid exposure during adolescence in rats: a strain comparison. Psychopharmacology, 2013, 225, 781-790.	3.1	74
38	Cognitive dysfunction in psychiatric disorders: characteristics, causes and the quest for improved therapy. Nature Reviews Drug Discovery, 2012, 11, 141-168.	46.4	960
39	Factoring neurotrophins into a neurite-based pathophysiological model of schizophrenia. Progress in Neurobiology, 2011, 94, 77-90.	5.7	26
40	Effect of Exposure to 1,800ÂMHz Electromagnetic Fields on Heat Shock Proteins and Glial Cells in the Brain of Developing Rats. Neurotoxicity Research, 2011, 20, 109-119.	2.7	35
41	Effect of antipsychotics on spontaneous hyperactivity and hypersensitivity to MK-801-induced hyperactivity in rats prenatally exposed to methylazoxymethanol. Journal of Psychopharmacology, 2011, 25, 822-835.	4.0	21
42	Cellular Plasticity and the Pathophysiology of Depression. , 2011, , 41-55.		3
43	The neurobiological properties of tianeptine (Stablon): from monoamine hypothesis to glutamatergic modulation. Molecular Psychiatry, 2010, 15, 237-249.	7.9	362
44	A New Strategy for Antidepressant Prescription. Frontiers in Neuroscience, 2010, 4, 192.	2.8	37
45	Acute Stress Induces Contrasting Changes in AMPA Receptor Subunit Phosphorylation within the Prefrontal Cortex, Amygdala and Hippocampus. PLoS ONE, 2010, 5, e15282.	2.5	48
46	Locus coeruleus stimulation and noradrenergic modulation of hippocampo-prefrontal cortex long-term potentiation. International Journal of Neuropsychopharmacology, 2010, 13, 1219-1231.	2.1	38
47	Role of noradrenaline in basolateral amygdala modulation of hippocampal-prefrontal cortical long-term potentiation. Neuroscience Research, 2010, 68, e448.	1.9	0
48	Neuropathological and Reelin Deficiencies in the Hippocampal Formation of Rats Exposed to MAM; Differences and Similarities with Schizophrenia. PLoS ONE, 2010, 5, e10291.	2.5	30
49	S.08.04 Restoring normal synaptic function in frontal netwoks as a new approach to treat mood disorders. European Neuropsychopharmacology, 2010, 20, S176.	0.7	0
50	Behavioral Perturbations After Prenatal Neurogenesis Disturbance in Female Rat. Neurotoxicity Research, 2009, 15, 311-320.	2.7	47
51	Potential application as screening and drug designing tools of cytoarchitectural deficiencies present in three animal models of schizophrenia. Expert Opinion on Drug Discovery, 2009, 4, 257-278.	5.0	6
52	Antidepressants reverse the attenuation of the neurotrophic MEK/MAPK cascade in frontal cortex by elevated platform stress; reversal of effects on LTP is associated with GluA1 phosphorylation. Neuropharmacology, 2009, 56, 37-46.	4.1	91
53	One-carbon metabolism and schizophrenia: current challenges and future directions. Trends in Molecular Medicine, 2009, 15, 562-570.	6.7	76
54	Interaction of dopamine D1 with NMDA NR1 receptors in rat prefrontal cortex. European Neuropsychopharmacology, 2009, 19, 296-304.	0.7	50

#	Article	IF	CITATIONS
55	Protection of stress-induced impairment of hippocampal/prefrontal LTP through blockade of glucocorticoid receptors. Experimental Neurology, 2008, 211, 593-596.	4.1	43
56	The Prefrontal Cortex as a Key Target of the Maladaptive Response to Stress. Journal of Neuroscience, 2007, 27, 2781-2787.	3.6	502
57	TIMP-1 Abolishes MMP-9-Dependent Long-lasting Long-term Potentiation in the Prefrontal Cortex. Biological Psychiatry, 2007, 62, 359-362.	1.3	136
58	Phosphorylation of CREB and DARPP-32 during late LTP at hippocampal to prefrontal cortex synapses in vivo. Synapse, 2007, 61, 24-28.	1.2	26
59	Anticonvulsive Effect of a Selective mGluR8 Agonist (S)-3,4-Dicarboxyphenylglycine (S-3,4-DCPG) in the Mouse Pilocarpine Model of Status Epilepticus. Epilepsia, 2007, 48, 783-792.	5.1	11
60	Effects of acute and chronic antidepressant treatments on memory performance: a comparison between paroxetine and imipramine. Psychopharmacology, 2007, 191, 353-364.	3.1	40
61	Dopamine D1 and Glutamate N-Methyl-D-Aspartate Receptors: An Essential Interplay in Prefrontal Cortex Synaptic Plasticity. , 2007, , 153-164.		0
62	D1 receptor modulation of memory retrieval performance is associated with changes in pCREB and pDARPP-32 in rat prefrontal cortex. Behavioural Brain Research, 2006, 171, 127-133.	2.2	62
63	Peri-pubertal maturation after developmental disturbance: A model for psychosis onset in the rat. Neuroscience, 2006, 143, 395-405.	2.3	130
64	Common efficacy of psychotropic drugs in restoring stress-induced impairment of prefrontal plasticity. Neurotoxicity Research, 2006, 10, 193-198.	2.7	31
65	A pathophysiological paradigm for the therapy of psychiatric disease. Nature Reviews Drug Discovery, 2005, 4, 467-476.	46.4	70
66	Opposite behaviours in the forced swimming test are linked to differences in spatial working memory performances in the rat. Neuroscience, 2005, 130, 285-293.	2.3	39
67	Modulation of recognition and temporal order memory retrieval by dopamine D1 receptor in rats. Neurobiology of Learning and Memory, 2005, 84, 85-92.	1.9	76
68	Acute Stress-induced Changes in Hippocampal/Prefrontal Circuits in Rats: Effects of Antidepressants. Cerebral Cortex, 2004, 14, 224-229.	2.9	270
69	Plasticity at hippocampal to prefrontal cortex synapses is impaired by loss of dopamine and stress: Importance for psychiatric diseases. Neurotoxicity Research, 2004, 6, 233-244.	2.7	123
70	Working memory deficits in adult rats after prenatal disruption of neurogenesis. Behavioural Pharmacology, 2004, 15, 287-292.	1.7	117
71	Up and Down Regulation of Synaptic Strength at Hippocampal to Prefrontal Cortex Synapses. , 2004, , 107-130.		3
72	Dopamine: a potential substrate for synaptic plasticity and memory mechanisms. Progress in Neurobiology, 2003, 69, 375-390.	5.7	501

Therese M Jay

#	Article	IF	CITATIONS
73	Head-only exposure to GSM 900-MHz electromagnetic fields does not alter rat's memory in spatial and non-spatial tasks. Behavioural Brain Research, 2003, 145, 51-61.	2.2	87
74	Does head-only exposure to GSM-900 electromagnetic fields affect the performance of rats in spatial learning tasks?. Behavioural Brain Research, 2002, 129, 203-210.	2.2	76
75	Effect of long-term potentiation induction on gamma-band electroencephalograms in prefrontal cortex following stimulation of rat hippocampus in vivo. Neuroscience Letters, 2001, 305, 57-60.	2.1	12
76	Plasticity at hippocampal to prefrontal cortex synapses: Dual roles in working memory and consolidation. Hippocampus, 2000, 10, 438-446.	1.9	306
77	Essential Role of D1 But Not D2 Receptors in the NMDA Receptor-Dependent Long-Term Potentiation at Hippocampal-Prefrontal Cortex Synapses <i>In Vivo</i> . Journal of Neuroscience, 2000, 20, RC106-RC106.	3.6	317
78	Excitotoxicity in neurological disorders — the glutamate paradox. International Journal of Developmental Neuroscience, 2000, 18, 281-287.	1.6	101
79	Long-Term Potentiation in the Dentate Gyrus Is Not Linked to Increased Extracellular Glutamate Concentration. Journal of Neurophysiology, 1999, 81, 1741-1748.	1.8	21
80	Induction of stable long-term depression in vivo in the hippocampal-prefrontal cortex pathway. European Journal of Neuroscience, 1999, 11, 4145-4148.	2.6	90
81	Integrity of the mesocortical dopaminergic system is necessary for complete expression of in vivo hippocampal–prefrontal cortex long-term potentiation. Neuroscience, 1999, 94, 1019-1027.	2.3	167
82	Rapid increase in PKA activity during long-term potentiation in the hippocampal afferent fibre system to the prefrontal cortexin vivo. European Journal of Neuroscience, 1998, 10, 3302-3306.	2.6	48
83	Reversal of LTP in the Hippocampal Afferent Fiber System to the Prefrontal Cortex In Vivo With Low-Frequency Patterns of Stimulation That Do Not Produce LTD. Journal of Neurophysiology, 1997, 78, 1155-1160.	1.8	66
84	Plasticity of the hippocampal-prefrontal cortex synapses. Journal of Physiology (Paris), 1996, 90, 361-366.	2.1	94
85	Inhibition of hippocampo-prefrontal cortex excitatory responses by the mesocortical DA system. NeuroReport, 1995, 6, 1845-1848.	1.2	73
86	NMDA Receptor-dependent Long-term Potentiation in the Hippocampal Afferent Fibre System to the Prefrontal Cortex in the Rat. European Journal of Neuroscience, 1995, 7, 247-250.	2.6	162
87	Anatomical and Electrophysiological Evidence for an Excitatory Amino Acid Pathway from the Thalamic Mediodorsal Nucleus to the Prefrontal Cortex in the Rat. European Journal of Neuroscience, 1994, 6, 1225-1234.	2.6	101
88	Excitatory Amino Acid Pathway from the Hippocampus to the Prefrontal Cortex. Contribution of AMPA Receptors in Hippocampo-prefrontal Cortex Transmission. European Journal of Neuroscience, 1992, 4, 1285-1295.	2.6	166
89	Distribution of hippocampal CA1 and subicular efferents in the prefrontal cortex of the rat studied by means of anterograde transport ofPhaseolus vulgaris-leucoagglutinin. Journal of Comparative Neurology, 1991, 313, 574-586.	1.6	770
90	Metabolic Stability of 3-O-Methyl-d-Glucose in Brain and Other Tissues. Journal of Neurochemistry, 1990, 55, 989-1000.	3.9	34

#	Article	IF	CITATIONS
91	Optimal Duration of Experimental Period in Measurement of Local Cerebral Glucose Utilization with the Deoxyglucose Method. Journal of Neurochemistry, 1990, 54, 307-319.	3.9	47
92	Long-term potentiation in the prefrontal cortex following stimulation of the hippocampal CA1/subicular region. Neuroscience Letters, 1990, 114, 184-190.	2.1	257
93	Refinement of the Kinetic Model of the 2-[14C]Deoxyglucose Method to Incorporate Effects of Intracellular Compartmentation in Brain. Journal of Cerebral Blood Flow and Metabolism, 1989, 9, 290-303.	4.3	38
94	Selectivity of the hippocampal projection to the prelimbic area of the prefrontal cortex in the rat. Brain Research, 1989, 505, 337-340.	2.2	266
95	Measurement of Local Cerebral Blood Flow with [¹⁴ C]Iodoantipyrine in the Mouse. Journal of Cerebral Blood Flow and Metabolism, 1988, 8, 121-129.	4.3	135
96	Local cerebral glucose utilization non-selectively elevated in rapid eye movement sleep of the fetus. Developmental Brain Research, 1988, 40, 65-70.	1.7	33
97	Local cerebral glucose utilization in the free moving mouse: a comparison during two stages of the activity-rest cycle. Brain Research, 1985, 342, 297-306.	2.2	40
98	Application of the 2-Deoxy- <i>D</i> -[¹⁴ C]-Glucose Method to the Mouse for Measuring Local Cerebral Glucose Utilization. European Neurology, 1981, 20, 169-172.	1.4	9
99	Differential radioautographic visualization of central catecholaminergic neurons following intracisternal or intraventricular injection of tritiated norepinephrine. Brain Research, 1978, 152, 567-572.	2.2	18
100	Chick phasic bioelectric activity at the time of hatching and the effects of previous nialamide injection. Brain Research, 1976, 101, 148-154.	2.2	6
101	A longitudinal study of bioelectric activity in the pre- and post-hatch chick. Developmental Psychobiology, 1976, 9, 539-547.	1.6	14
102	Effects of early post-natal ?-methyl-Dopa treatment on behavior in the rat. Psychopharmacology, 1975, 42, 95-97.	3.1	6
103	Servo bandwidth and positioning accuracy design for high track density disk drives. , 0, , .		4
104	In search of the mechanisms of ketamine's antidepressant effects: How robust is the evidence behind the mTor activation hypothesis. F1000Research, 0, 5, 634.	1.6	28