

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3576699/publications.pdf Version: 2024-02-01

HONC OL

#	Article	IF	CITATIONS
1	Fabrication of a novel microporous membrane based on ZIF-7 doped 1,2-bis(triethoxysilyl)ethane for H2/CO2 separation. Microporous and Mesoporous Materials, 2022, 331, 111674.	4.4	4
2	Wire-wrapped and helically-finned tubular ceramic membranes for enhancing water and waste heat recovery from wet flue gas. Separation and Purification Technology, 2022, 289, 120727.	7.9	6
3	Fabrication of Pd-Nb bimetallic doped organosilica membranes by different metal doping routes for H2/CO2 separation. Chinese Journal of Chemical Engineering, 2021, 36, 67-75.	3.5	5
4	Improving heat transfer and water recovery performance in highâ€moisture flue gas condensation using silicon carbide membranes. International Journal of Energy Research, 2021, 45, 10974-10988.	4.5	10
5	Tuning the microstructure of organosilica membranes with improved gas permselectivity via the co-polymerization of 1,2-bis(triethoxysilyl)ethane and 1,2-bis(triethoxysilyl)methane. International Journal of Hydrogen Energy, 2021, 46, 17221-17230.	7.1	7
6	Negatively charged organic–inorganic hybrid silica nanofiltration membranes for lithium extraction. Chinese Journal of Chemical Engineering, 2020, 28, 749-757.	3.5	7
7	Palladium-niobium bimetallic doped organosilica membranes for H2/CO2 separation. Microporous and Mesoporous Materials, 2020, 305, 110279.	4.4	7
8	Superhydrophobic-superoleophilic SiC membranes with micro-nano hierarchical structures for high-efficient water-in-oil emulsion separation. Journal of Membrane Science, 2020, 601, 117842.	8.2	60
9	Controlling pore structures of Pd-doped organosilica membranes by calcination atmosphere for gas separation. Chinese Journal of Chemical Engineering, 2019, 27, 3036-3042.	3.5	5
10	Fabrication and characterization of TiO2/ZrO2 ceramic membranes for nanofiltration. Microporous and Mesoporous Materials, 2018, 260, 125-131.	4.4	76
11	Tuning sol size to optimize organosilica membranes for gas separation. Chinese Journal of Chemical Engineering, 2018, 26, 53-59.	3.5	12
12	Specially Wettable Membranes for Oil–Water Separation. Advanced Materials Interfaces, 2018, 5, 1800576.	3.7	212
13	Tailoring pore structures to improve the permselectivity of organosilica membranes by tuning calcination parameters. Journal of Materials Chemistry A, 2017, 5, 24657-24666.	10.3	34
14	A novel strategy to enhance hydrothermal stability of Pd-doped organosilica membrane for hydrogen separation. Microporous and Mesoporous Materials, 2017, 253, 55-63.	4.4	16
15	Simultaneous heat and water recovery from flue gas by membrane condensation: Experimental investigation. Applied Thermal Engineering, 2017, 113, 843-850.	6.0	100
16	Pd-doped organosilica membrane with enhanced gas permeability and hydrothermal stability for gas separation. Journal of Materials Science, 2016, 51, 6275-6286.	3.7	37
17	Hydrothermally stable Zr-doped organosilica membranes for H2/CO2 separation. Microporous and Mesoporous Materials, 2016, 224, 277-284.	4.4	38
18	Multichannel Tubular Ceramic Membrane for Water and Heat Recovery from Waste Gas Streams. Industrial & Engineering Chemistry Research, 2016, 55, 2615-2622.	3.7	54

Hong Qi

#	Article	IF	CITATIONS
19	Effect of sol size on nanofiltration performance of a sol–gel derived microporous zirconia membrane. Chinese Journal of Chemical Engineering, 2015, 23, 31-41.	3.5	19
20	Transport membrane condenser for water and heat recovery from gaseous streams: Performance evaluation. Journal of Membrane Science, 2015, 484, 10-17.	8.2	97
21	Gas separation using sol–gel derived microporous zirconia membranes with high hydrothermal stability. Chinese Journal of Chemical Engineering, 2015, 23, 1300-1306.	3.5	12
22	Enhanced performance of a macroporous ceramic support for nanofiltration by using α-Al2O3 with narrow size distribution. Ceramics International, 2013, 39, 2463-2471.	4.8	58
23	Effect of Nb content on hydrothermal stability of a novel ethylene-bridged silsesquioxane molecular sieving membrane for H2/CO2 separation. Journal of Membrane Science, 2012, 421-422, 190-200.	8.2	50
24	Fabrication of a sol–gel derived microporous zirconia membrane for nanofiltration. Journal of Sol-Gel Science and Technology, 2012, 62, 208-216.	2.4	35
25	Effect of calcination temperature on carbon dioxide separation properties of a novel microporous hybrid silica membrane. Journal of Membrane Science, 2011, 382, 231-237.	8.2	45
26	Preparation of Composite Microporous Silica Membranes Using TEOS and 1, 2-Bis(triethoxysilyl)ethane as Precursors for Gas Separation. Chinese Journal of Chemical Engineering, 2011, 19, 404-409.	3.5	12
27	Hybrid Organic–Inorganic Microporous Membranes with High Hydrothermal Stability for the Separation of Carbon Dioxide. ChemSusChem, 2010, 3, 1375-1378.	6.8	47
28	Co-sintering synthesis of tubular bilayer α-alumina membrane. Journal of Membrane Science, 2007, 288, 20-27.	8.2	66