Xiaobing Fu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3575863/publications.pdf

Version: 2024-02-01

179	6,516	42	70
papers	citations	h-index	g-index
189	189	189	9013 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for resolution of chronic inflammation via exosome-shuttled let-7b. Journal of Translational Medicine, 2015, 13, 308.	4.4	469
2	Advanced drug delivery systems and artificial skin grafts for skin wound healing. Advanced Drug Delivery Reviews, 2019, 146, 209-239.	13.7	369
3	IncRNAs: Insights into their function and mechanics in underlying disorders. Mutation Research - Reviews in Mutation Research, 2014, 762, 1-21.	5.5	196
4	Anesthesia and Surgery Impair Blood–Brain Barrier and Cognitive Function in Mice. Frontiers in Immunology, 2017, 8, 902.	4.8	153
5	3D bioprinted extracellular matrix mimics facilitate directed differentiation of epithelial progenitors for sweat gland regeneration. Acta Biomaterialia, 2016, 32, 170-177.	8.3	148
6	Tolerance and efficacy of autologous or donor-derived T cells expressing CD19 chimeric antigen receptors in adult B-ALL with extramedullary leukemia. Oncolmmunology, 2015, 4, e1027469.	4.6	142
7	Enhanced woundâ€healing quality with bone marrow mesenchymal stem cells autografting after skin injury. Wound Repair and Regeneration, 2006, 14, 325-335.	3.0	141
8	Mesenchymal stem cells and skin wound repair and regeneration: possibilities and questions. Cell and Tissue Research, 2009, 335, 317-321.	2.9	119
9	Mesenchymal stem cells-derived exosomal microRNAs contribute to wound inflammation. Science China Life Sciences, 2016, 59, 1305-1312.	4.9	110
10	A cohort study of diabetic patients and diabetic foot ulceration patients in China. Wound Repair and Regeneration, 2015, 23, 222-230.	3.0	109
11	Tuning Alginate-Gelatin Bioink Properties by Varying Solvent and Their Impact on Stem Cell Behavior. Scientific Reports, 2018, 8, 8020.	3.3	108
12	Cordycepin prevents radiation ulcer by inhibiting cell senescence via NRF2 and AMPK in rodents. Nature Communications, 2019, 10, 2538.	12.8	104
13	Heparin-Based Coacervate of FGF2 Improves Dermal Regeneration by Asserting a Synergistic Role with Cell Proliferation and Endogenous Facilitated VEGF for Cutaneous Wound Healing. Biomacromolecules, 2016, 17, 2168-2177.	5.4	99
14	Migration of bone marrowâ€derived mesenchymal stem cells induced by tumor necrosis factorâ€Î± and its possible role in wound healing. Wound Repair and Regeneration, 2009, 17, 185-191.	3.0	96
15	Epithelial-mesenchymal transition: An emerging target in tissue fibrosis. Experimental Biology and Medicine, 2016, 241, 1-13.	2.4	95
16	Engineered growth factors and cutaneous wound healing: Success and possible questions in the past 10 years. Wound Repair and Regeneration, 2005, 13, 122-130.	3.0	93
17	Regeneration of functional sweat glandâ€like structures by transplanted differentiated bone marrow mesenchymal stem cells. Wound Repair and Regeneration, 2009, 17, 427-435.	3.0	91
18	VH298-loaded extracellular vesicles released from gelatin methacryloyl hydrogel facilitate diabetic wound healing by HIF-1α-mediated enhancement of angiogenesis. Acta Biomaterialia, 2022, 147, 342-355.	8.3	88

#	Article	IF	CITATIONS
19	Mesenchymal stem cells delivered in a microsphere-based engineered skin contribute to cutaneous wound healing and sweat gland repair. Journal of Dermatological Science, 2012, 66, 29-36.	1.9	85
20	Epidemiology of chronic cutaneous wounds in China. Wound Repair and Regeneration, 2011, 19, 181-188.	3.0	84
21	Small molecules for reprogramming and transdifferentiation. Cellular and Molecular Life Sciences, 2017, 74, 3553-3575.	5.4	84
22	Functional hair follicle regeneration: an updated review. Signal Transduction and Targeted Therapy, 2021, 6, 66.	17.1	78
23	Mesenchymal stem cellâ€conditioned medium accelerates wound healing with fewer scars. International Wound Journal, 2017, 14, 64-73.	2.9	77
24	Adipose tissue extract enhances skin wound healing. Wound Repair and Regeneration, 2007, 15, 540-548.	3.0	74
25	Hypoxia pretreatment of bone marrow—derived mesenchymal stem cells seeded in a collagenâ€chitosan sponge scaffold promotes skin wound healing in diabetic rats with hindlimb ischemia. Wound Repair and Regeneration, 2016, 24, 45-56.	3.0	74
26	Hypoxia Pretreatment of Bone Marrow Mesenchymal Stem Cells Facilitates Angiogenesis by Improving the Function of Endothelial Cells in Diabetic Rats with Lower Ischemia. PLoS ONE, 2015, 10, e0126715.	2.5	70
27	Treatment of MSCs with Wnt1a-conditioned medium activates DP cells and promotes hair follicle regrowth. Scientific Reports, 2014, 4, 5432.	3.3	64
28	Platelet-derived growth factor receptor beta identifies mesenchymal stem cells with enhanced engraftment to tissue injury and pro-angiogenic property. Cellular and Molecular Life Sciences, 2018, 75, 547-561.	5.4	63
29	Biochemical and structural cues of 3D-printed matrix synergistically direct MSC differentiation for functional sweat gland regeneration. Science Advances, 2020, 6, eaaz 1094.	10.3	63
30	bFGF Promotes the Migration of Human Dermal Fibroblasts under Diabetic Conditions through Reactive Oxygen Species Production via the PI3K/Akt-Rac1-JNK Pathways. International Journal of Biological Sciences, 2015, 11, 845-859.	6.4	60
31	Mesenchymal Stem Cells Suppress Fibroblast Proliferation and Reduce Skin Fibrosis Through a TGF-Î ² 3-Dependent Activation. International Journal of Lower Extremity Wounds, 2015, 14, 50-62.	1.1	60
32	Whole-exome sequencing of endometriosis identifies frequent alterations in genes involved in cell adhesion and chromatin-remodeling complexes. Human Molecular Genetics, 2014, 23, 6008-6021.	2.9	59
33	What Determines the Regenerative Capacity in Animals?. BioScience, 2016, 66, 735-746.	4.9	58
34	Properties of an alginate-gelatin-based bioink and its potential impact on cell migration, proliferation, and differentiation. International Journal of Biological Macromolecules, 2019, 135, 1107-1113.	7.5	56
35	Biophysical and Biochemical Cues of Biomaterials Guide Mesenchymal Stem Cell Behaviors. Frontiers in Cell and Developmental Biology, 2021, 9, 640388.	3.7	56
36	Mesenchymal Stem Cell–Conditioned Medium Improves the Proliferation and Migration of Keratinocytes in a Diabetes-Like Microenvironment. International Journal of Lower Extremity Wounds, 2015, 14, 73-86.	1.1	55

#	Article	IF	CITATIONS
37	Impaired wound healing results from the dysfunction of the Akt/mTOR pathway in diabetic rats. Journal of Dermatological Science, 2015, 79, 241-251.	1.9	53
38	Biomimetic Silk Scaffolds with an Amorphous Structure for Soft Tissue Engineering. ACS Applied Materials & Samp; Interfaces, 2018, 10, 9290-9300.	8.0	53
39	Low-Dose Decitabine-Based Chemoimmunotherapy for Patients with Refractory Advanced Solid Tumors: A Phase I/II Report. Journal of Immunology Research, 2014, 2014, 1-14.	2.2	52
40	3D bioprinting matrices with controlled pore structure and release function guide in vitro self-organization of sweat gland. Scientific Reports, 2016, 6, 34410.	3.3	50
41	Hypoxia Regulates the Therapeutic Potential of Mesenchymal Stem Cells Through Enhanced Autophagy. International Journal of Lower Extremity Wounds, 2015, 14, 63-72.	1.1	48
42	Paracrine action of mesenchymal stromal cells delivered by microspheres contributes to cutaneous wound healing and prevents scar formation in mice. Cytotherapy, 2015, 17, 922-931.	0.7	44
43	Retinoic Acid Induced-Autophagic Flux Inhibits ER-Stress Dependent Apoptosis and Prevents Disruption of Blood-Spinal Cord Barrier after Spinal Cord Injury. International Journal of Biological Sciences, 2016, 12, 87-99.	6.4	44
44	A Conditioned Medium of Umbilical Cord Mesenchymal Stem Cells Overexpressing Wnt7a Promotes Wound Repair and Regeneration of Hair Follicles in Mice. Stem Cells International, 2017, 2017, 1-13.	2.5	43
45	Promising new potential for mesenchymal stem cells derived from human umbilical cord Wharton's jelly: sweat gland cell-like differentiative capacity. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, 645-654.	2.7	41
46	A Novel Mechanism of Mesenchymal Stromal Cell-Mediated Protection against Sepsis: Restricting Inflammasome Activation in Macrophages by Increasing Mitophagy and Decreasing Mitochondrial ROS. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-15.	4.0	40
47	Regenerative and protective effects of dMSC-sEVs on high-glucose-induced senescent fibroblasts by suppressing RAGE pathway and activating Smad pathway. Stem Cell Research and Therapy, 2020, 11, 166.	5.5	40
48	Mesenchymal stem cell–based therapy for nonhealing wounds: today and tomorrow. Wound Repair and Regeneration, 2015, 23, 465-482.	3.0	39
49	Insight into Reepithelialization: How Do Mesenchymal Stem Cells Perform?. Stem Cells International, 2016, 2016, 1-9.	2.5	39
50	Epidemiological study of chronic dermal ulcers in China. Wound Repair and Regeneration, 1998, 6, 21-27.	3.0	37
51	Efficacy of Topical Recombinant Human Epidermal Growth Factor for Treatment of Diabetic Foot Ulcer. International Journal of Lower Extremity Wounds, 2016, 15, 120-125.	1.1	36
52	Culturing on Wharton's Jelly Extract Delays Mesenchymal Stem Cell Senescence through p53 and p16INK4a/pRb Pathways. PLoS ONE, 2013, 8, e58314.	2.5	36
53	Using bioprinting and spheroid culture to create a skin model with sweat glands and hair follicles. Burns and Trauma, 2021, 9, tkab013.	4.9	34
54	Potentiality of Mesenchymal Stem Cells in Regeneration of Sweat Glands. Journal of Surgical Research, 2006, 136, 204-208.	1.6	33

#	Article	IF	CITATIONS
55	Sweat gland regeneration after burn injury: is stem cell therapy a new hope?. Cytotherapy, 2015, 17, 526-535.	0.7	33
56	Ageâ€essociated changes in regenerative capabilities of mesenchymal stem cell: impact on chronic wounds repair. International Wound Journal, 2016, 13, 1252-1259.	2.9	33
57	Stiffness-mediated mesenchymal stem cell fate decision in 3D-bioprinted hydrogels. Burns and Trauma, 2020, 8, tkaa029.	4.9	33
58	Three-dimensional culture and identification of human eccrine sweat glands in matrigel basement membrane matrix. Cell and Tissue Research, 2013, 354, 897-902.	2.9	32
59	LRP16 Integrates into NF-κB Transcriptional Complex and Is Required for Its Functional Activation. PLoS ONE, 2011, 6, e18157.	2.5	32
60	Abnormalities in the basement membrane structure promote basal keratinocytes in the epidermis of hypertrophic scars to adopt a proliferative phenotype. International Journal of Molecular Medicine, 2016, 37, 1263-1273.	4.0	31
61	The Interaction between Epidermal Growth Factor and Matrix Metalloproteinases Induces the Development of Sweat Glands in Human Fetal Skin. Journal of Surgical Research, 2002, 106, 258-263.	1.6	30
62	Epidermal stem cells are the source of sweat glands in human fetal skin: Evidence of synergetic development of stem cells, sweat glands, growth factors, and matrix metalloproteinases. Wound Repair and Regeneration, 2005, 13, 102-108.	3.0	30
63	Basic fibroblast growth factor promotes melanocyte migration via activating PI3K/Aktâ€Rac1â€FAKâ€JNK and ERK signaling pathways. IUBMB Life, 2016, 68, 735-747.	3.4	30
64	Tollâ€like receptor 4 ablation rescues against paraquatâ€triggered myocardial dysfunction: Role of ER stress and apoptosis. Environmental Toxicology, 2017, 32, 656-668.	4.0	30
65	Beyond 2D: 3D bioprinting for skin regeneration. International Wound Journal, 2019, 16, 134-138.	2.9	30
66	Role of Keratinocyte Growth Factor in the Differentiation of Sweat Gland-Like Cells From Human Umbilical Cord-Derived Mesenchymal Stem Cells. Stem Cells Translational Medicine, 2016, 5, 106-116.	3.3	29
67	Bioactive nanoparticle reinforced alginate/gelatin bioink for the maintenance of stem cell stemness. Materials Science and Engineering C, 2021, 126, 112193.	7.3	29
68	Extracorporeal shock wave therapy for chronic wounds: A systematic review and metaâ€analysis of randomized controlled trials. Wound Repair and Regeneration, 2017, 25, 697-706.	3.0	28
69	Genetic and Methylation-Induced Loss of miR-181a2/181b2 within chr9q33.3 Facilitates Tumor Growth of Cervical Cancer through the PIK3R3/Akt/FoxO Signaling Pathway. Clinical Cancer Research, 2017, 23, 575-586.	7.0	28
70	Matrigel basement membrane matrix induces eccrine sweat gland cells to reconstitute sweat gland-like structures in nude mice. Experimental Cell Research, 2015, 332, 67-77.	2.6	27
71	Chitosan/LiCl composite scaffolds promote skin regeneration in full-thickness loss. Science China Life Sciences, 2020, 63, 552-562.	4.9	27
72	Autologous CIK Cell Immunotherapy in Patients with Renal Cell Carcinoma after Radical Nephrectomy. Clinical and Developmental Immunology, 2013, 2013, 1-12.	3.3	26

#	Article	IF	CITATIONS
73	Epigenetic Control of Reprogramming and Transdifferentiation by Histone Modifications. Stem Cell Reviews and Reports, 2016, 12, 708-720.	5. 6	26
74	Will stem cells bring hope to pathological skin scar treatment?. Cytotherapy, 2016, 18, 943-956.	0.7	26
75	Umbilical cord–derived mesenchymal stromal cell–conditioned medium exerts in vitro antiaging effects in human fibroblasts. Cytotherapy, 2017, 19, 371-383.	0.7	26
76	Bone Marrow-Derived Mesenchymal Stem Cells Promoted Cutaneous Wound Healing by Regulating Keratinocyte Migration via \hat{l}^2 ₂ -Adrenergic Receptor Signaling. Molecular Pharmaceutics, 2018, 15, 2513-2527.	4.6	26
77	The stiffness of hydrogel-based bioink impacts mesenchymal stem cells differentiation toward sweat glands in 3D-bioprinted matrix. Materials Science and Engineering C, 2021, 118, 111387.	7.3	26
78	Targeting ectodysplasin promotor by CRISPR/dCas9-effector effectively induces the reprogramming of human bone marrow-derived mesenchymal stem cells into sweat gland-like cells. Stem Cell Research and Therapy, 2018, 9, 8.	5 . 5	25
79	Optogenetics sheds new light on tissue engineering and regenerative medicine. Biomaterials, 2020, 227, 119546.	11.4	25
80	Can hematopoietic stem cells be an alternative source for skin regeneration?. Ageing Research Reviews, 2009, 8, 244-249.	10.9	24
81	Localization of Na+–K+-ATPase αĴ², Na+–K+–2Cl-cotransporter 1 and aquaporin-5 in human eccrine sweat glands. Acta Histochemica, 2014, 116, 1374-1381.	1.8	24
82	Angiogenic Effect of Mesenchymal Stem Cells as a Therapeutic Target for Enhancing Diabetic Wound Healing. International Journal of Lower Extremity Wounds, 2014, 13, 88-93.	1.1	24
83	Isoproterenol regulates CD44 expression in gastric cancer cells through STAT3/MicroRNA373 cascade. Biomaterials, 2016, 105, 89-101.	11.4	24
84	Wnt1a maintains characteristics of dermal papilla cells that induce mouse hair regeneration in a 3D preculture system. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1479-1489.	2.7	24
85	Preferred M2 Polarization by ASC-Based Hydrogel Accelerated Angiogenesis and Myogenesis in Volumetric Muscle Loss Rats. Stem Cells International, 2017, 2017, 1-13.	2.5	23
86	Chemical conversion of human and mouse fibroblasts into motor neurons. Science China Life Sciences, 2018, 61, 1151-1167.	4.9	23
87	JAM-A knockdown accelerates the proliferation and migration of human keratinocytes, and improves wound healing in rats via FAK/Erk signaling. Cell Death and Disease, 2018, 9, 848.	6.3	23
88	Insights into bone marrowâ€derived mesenchymal stem cells safety for cutaneous repair and regeneration. International Wound Journal, 2012, 9, 586-594.	2.9	22
89	Are hair follicle stem cells promising candidates for wound healing?. Expert Opinion on Biological Therapy, 2019, 19, 119-128.	3.1	22
90	Bioactive Molecules for Skin Repair and Regeneration: Progress and Perspectives. Stem Cells International, 2019, 2019, 1-13.	2.5	21

#	Article	IF	Citations
91	<i>Pten</i> loss in Lgr5 ⁺ hair follicle stem cells promotes SCC development. Theranostics, 2019, 9, 8321-8331.	10.0	20
92	Regenerative and protective effects of calcium silicate on senescent fibroblasts induced by high glucose. Wound Repair and Regeneration, 2020, 28, 315-325.	3.0	20
93	An LRP16-containing preassembly complex contributes to NF-κB activation induced by DNA double-strand breaks. Nucleic Acids Research, 2015, 43, 3167-3179.	14.5	19
94	Fibrogenic fibroblast-selective near-infrared phototherapy to control scarring. Theranostics, 2019, 9, 6797-6808.	10.0	19
95	Mesenchymal stem cells for sweat gland regeneration after burns: From possibility to reality. Burns, 2016, 42, 492-499.	1.9	18
96	China's landscape in regenerative medicine. Biomaterials, 2017, 124, 78-94.	11.4	18
97	TSA restores hair follicle-inductive capacity of skin-derived precursors. Scientific Reports, 2019, 9, 2867.	3.3	18
98	Akermanite bioceramic enhances wound healing with accelerated reepithelialization by promoting proliferation, migration, and stemness of epidermal cells. Wound Repair and Regeneration, 2020, 28, 16-25.	3.0	18
99	Epidemiological characteristics and clinical analyses of chronic cutaneous wounds of inpatients in China: Prevention and control. Wound Repair and Regeneration, 2020, 28, 623-630.	3.0	18
100	Sweat Gland Organoids Originating from Reprogrammed Epidermal Keratinocytes Functionally Recapitulated Damaged Skin. Advanced Science, 2021, 8, e2103079.	11,2	18
101	Direct reprogramming of human fibroblasts into sweat gland-like cells. Cell Cycle, 2015, 14, 3498-3505.	2.6	17
102	Changes in keratins and alpha-smooth muscle actin during three-dimensional reconstitution of eccrine sweat glands. Cell and Tissue Research, 2016, 365, 113-122.	2.9	17
103	The Focus and Target: Angiogenesis in Refractory Wound Healing. International Journal of Lower Extremity Wounds, 2018, 17, 301-303.	1.1	17
104	Overexpression of cyclin D1 induces the reprogramming of differentiated epidermal cells into stem cell-like cells. Cell Cycle, 2016, 15, 644-653.	2.6	16
105	Pleiotropic Roles of CXCR4 in Wound Repair and Regeneration. Frontiers in Immunology, 2021, 12, 668758.	4.8	16
106	Mesenchymal stromal cells enhance wound healing by ameliorating impaired metabolism in diabetic mice. Cytotherapy, 2014, 16, 1467-1475.	0.7	15
107	Three-dimensional co-culture of BM-MSCs and eccrine sweat gland cells in Matrigel promotes transdifferentiation of BM-MSCs. Journal of Molecular Histology, 2015, 46, 431-438.	2.2	15
108	Skin appendage-derived stem cells: cell biology and potential for wound repair. Burns and Trauma, 2016, 4, 38.	4.9	15

#	Article	lF	CITATIONS
109	Survey of Wound-Healing Centers and Wound Care Units in China. International Journal of Lower Extremity Wounds, 2016, 15, 274-279.	1.1	15
110	Arsenic trioxide inhibits the differentiation of fibroblasts to myofibroblasts through nuclear factor erythroid 2â€like 2 (NFE2L2) protein and the Smad2/3 pathway. Journal of Cellular Physiology, 2019, 234, 2606-2617.	4.1	15
111	Chemical conversion of human epidermal stem cells into intestinal goblet cells for modeling mucus-microbe interaction and therapy. Science Advances, 2021, 7, .	10.3	15
112	Transdifferentiation of Umbilical Cord–Derived Mesenchymal Stem Cells Into Epidermal-Like Cells by the Mimicking Skin Microenvironment. International Journal of Lower Extremity Wounds, 2015, 14, 136-145.	1.1	14
113	Autologous epidermal cell suspension: A promising treatment for chronic wounds. Journal of Tissue Viability, 2016, 25, 50-56.	2.0	14
114	Sweat gland regeneration: Current strategies and future opportunities. Biomaterials, 2020, 255, 120201.	11.4	14
115	Oriented cell division: new roles in guiding skin wound repair and regeneration. Bioscience Reports, 2015, 35, .	2.4	13
116	Mesenchymal stem cells ameliorate inflammatory cytokine-induced impairment of AT-II cells through a keratinocyte growth factor-dependent PI3K/Akt/mTOR signaling pathway. Molecular Medicine Reports, 2016, 13, 3755-3762.	2.4	13
117	Regeneration of hair and other skin appendages: A microenvironmentâ€eentric view. Wound Repair and Regeneration, 2016, 24, 759-766.	3.0	12
118	Molecular mechanism of myofibroblast formation and strategies for clinical drugs treatments in hypertrophic scars. Journal of Cellular Physiology, 2020, 235, 4109-4119.	4.1	12
119	Direct conversion of human fibroblasts into dopaminergic neuron-like cells using small molecules and protein factors. Military Medical Research, 2020, 7, 52.	3.4	12
120	Photobiomodulation promotes hair regeneration in injured skin by enhancing migration and exosome secretion of dermal papilla cells. Wound Repair and Regeneration, 2022, 30, 245-257.	3.0	12
121	Epidermal stem cells: an update on their potential in regenerative medicine. Expert Opinion on Biological Therapy, 2013, 13, 901-910.	3.1	11
122	MSC attenuate diabetes-induced functional impairment in adipocytes via secretion of insulin-like growth factor-1. Biochemical and Biophysical Research Communications, 2014, 452, 99-105.	2.1	11
123	Cytokeratin Expression at Different Stages in Sweat Gland Development of C57BL/6J Mice. International Journal of Lower Extremity Wounds, 2015, 14, 365-371.	1.1	11
124	Combination of keratins and alpha-smooth muscle actin distinguishes secretory coils from ducts of eccrine sweat glands. Acta Histochemica, 2015, 117, 275-278.	1.8	11
125	Myoprotective effects of bFGF on skeletal muscle injury in pressure-related deep tissue injury in rats. Burns and Trauma, 2016, 4, 26.	4.9	11
126	Identification of a new sweat gland progenitor population in mice and the role of their niche in tissue development. Biochemical and Biophysical Research Communications, 2016, 479, 670-675.	2.1	11

#	Article	IF	CITATIONS
127	Theoretical and practical aspects of using fetal fibroblasts for skin regeneration. Ageing Research Reviews, 2017, 36, 32-41.	10.9	11
128	Genetic engineering of T cells with chimeric antigen receptors for hematological malignancy immunotherapy. Science China Life Sciences, 2018, 61, 1320-1332.	4.9	11
129	Direct reprogramming of epidermal cells toward sweat gland-like cells by defined factors. Cell Death and Disease, 2019, 10, 272.	6.3	11
130	Efficient and rapid conversion of human astrocytes and ALS mouse model spinal cord astrocytes into motor neuron-like cells by defined small molecules. Military Medical Research, 2020, 7, 42.	3.4	11
131	Calcium silicate accelerates cutaneous wound healing with enhanced re-epithelialization through EGF/EGFR/ERK-mediated promotion of epidermal stem cell functions. Burns and Trauma, 2021, 9, tkab029.	4.9	11
132	Regenerative and reparative effects of human chorion-derived stem cell conditioned medium on photo-aged epidermal cells. Cell Cycle, 2016, 15, 1144-1155.	2.6	10
133	A novel model of humanised keloid scarring in mice. International Wound Journal, 2018, 15, 90-94.	2.9	10
134	Regenerative medicine in China: demands, capacity, and regulation. Burns and Trauma, 2016, 4, 24.	4.9	9
135	Location, Isolation, and Identification of Mesenchymal Stem Cells from Adult Human Sweat Glands. Stem Cells International, 2018, 2018, 1-12.	2.5	9
136	The clinical effectiveness and safety of using epidermal growth factor, fibroblast growth factor and granulocyte-macrophage colony stimulating factor as therapeutics in acute skin wound healing: a systematic review and meta-analysis. Burns and Trauma, 2022, 10, tkac002.	4.9	9
137	The cellular localization of Na+/H+ exchanger 1, cystic fibrosis transmembrane conductance regulator, potassium channel, epithelial sodium channel \hat{I}^3 and vacuolar-type H+-ATPase in human eccrine sweat glands. Acta Histochemica, 2014, 116, 1237-1243.	1.8	8
138	latrogenic wounds: a common but often overlooked problem. Burns and Trauma, 2019, 7, 18.	4.9	8
139	Blood-clotting model and simulation analysis of polyvinyl alcohol–chitosan composite hemostatic materials. Journal of Materials Chemistry B, 2021, 9, 5465-5475.	5.8	8
140	Repair cell first, then regenerate the tissues and organs. Military Medical Research, 2021, 8, 2.	3.4	8
141	Establishing an Education Program for Chronic Wound Care in China. International Journal of Lower Extremity Wounds, 2012, 11, 320-324.	1.1	7
142	A Molecular Link Between Interleukin 22 and Intestinal Mucosal Wound Healing. Advances in Wound Care, 2012, 1, 231-237.	5.1	7
143	Chemical modulation of cell fates: in situ regeneration. Science China Life Sciences, 2018, 61, 1137-1150.	4.9	7
144	Developing a Novel and Convenient Model for Investigating Sweat Gland Morphogenesis from Epidermal Stem Cells. Stem Cells International, 2019, 2019, 1-7.	2.5	7

#	Article	IF	Citations
145	Three statistical experimental designs for enhancing yield of active compounds from herbal medicines and anti motion sickness bioactivity. Pharmacognosy Magazine, 2015, 11, 435.	0.6	7
146	Wound Care Study and Translation Application. International Journal of Lower Extremity Wounds, 2014, 13, 84-87.	1.1	6
147	G-CSF Administration after the Intraosseous Infusion of Hypertonic Hydroxyethyl Starches Accelerating Wound Healing Combined with Hemorrhagic Shock. BioMed Research International, 2016, 2016, 1-9.	1.9	6
148	Irf6 directs glandular lineage differentiation of epidermal progenitors and promotes limited sweat gland regeneration in a mouse burn model. Stem Cell Research and Therapy, 2018, 9, 179.	5.5	6
149	Concentrated Conditioned Medium-Loaded Silk Nanofiber Hydrogels with Sustained Release of Bioactive Factors To Improve Skin Regeneration. ACS Applied Bio Materials, 2019, 2, 4397-4407.	4.6	6
150	State policy for managing chronic skin wounds in China. Wound Repair and Regeneration, 2020, 28, 576-577.	3.0	6
151	Engineered Skin Substitute Regenerates the Skin with Hair Follicle Formation. Biomedicines, 2021, 9, 400.	3.2	6
152	Kirsten Rat Sarcoma Viral Oncogene Homologue (KRAS) Mutations in the Occurrence and Treatment of Pancreatic Cancer. Current Topics in Medicinal Chemistry, 2019, 19, 2176-2186.	2.1	6
153	Promotive effects of four herbal medicine <scp>ARCC</scp> on wound healing in mice and human. Health Science Reports, 2022, 5, e494.	1.5	6
154	Regenerative medicine research in China: from basic research to clinical practice. Science China Life Sciences, 2014, 57, 155-156.	4.9	5
155	Transdifferentiation of Fibroblasts by Defined Factors. Cellular Reprogramming, 2015, 17, 151-159.	0.9	5
156	Regenerative medicine in China: new advances and hopes. Science China Life Sciences, 2018, 61, 1135-1136.	4.9	5
157	OUP accepted manuscript. Burns and Trauma, 2022, 10, tkab044.	4.9	5
158	Should pyogenic granulomas following burns be excised?. Burns, 2015, 41, 431-436.	1.9	4
159	Improving Would Healing Ability by Training: Experiences of China. International Journal of Lower Extremity Wounds, 2018, 17, 190-194.	1.1	4
160	MicroRNA-mediated regulation of BM-MSCs differentiation into sweat gland-like cells: targeting NF-κB. Journal of Molecular Histology, 2019, 50, 155-166.	2.2	4
161	VEGF alleviates lower limb ischemia in diabetic mice by altering muscle fiber types. Experimental and Therapeutic Medicine, 2022, 23, 251.	1.8	4
162	Photobiomodulation Therapy With Different Wavebands for Hair Loss: A Systematic Review and Meta-Analysis. Dermatologic Surgery, 2022, 48, 737-740.	0.8	4

#	Article	IF	CITATIONS
163	The role of CTHRC1 in hair follicle regenerative capacity restored by plantar dermis homogenate. Biochemical and Biophysical Research Communications, 2021, 571, 14-19.	2.1	3
164	Autophagy, not apoptosis, plays a role in lumen formation of eccrine gland organoids. Chinese Medical Journal, 2022, 135, 324-332.	2.3	3
165	Dynamic microenvironment and multiple damaged tissue regeneration in a de novo and synchronized manner. Science China Life Sciences, 2016, 59, 1332-1334.	4.9	2
166	BrdU-label-retaining cells in rat eccrine sweat glands over time. Acta Histochemica, 2016, 118, 74-79.	1.8	2
167	Src activation decouples cell division orientation from cell geometry in mammalian cells. Biomaterials, 2018, 170, 82-94.	11.4	2
168	Insight into cellular dedifferentiation in regenerative medicine. Science China Life Sciences, 2020, 63, 301-304.	4.9	2
169	Growth factor regulatory system: a new system for not truly recognized organisms. Science China Life Sciences, 2020, 63, 443-446.	4.9	2
170	Regulation of macrophage migration in ischemic mouse hearts via an AKT2/NBA1/SPK1 pathway. Oncotarget, 2017, 8, 115345-115359.	1.8	2
171	Prevention and control of serious trauma and accidental injury in China: Timely but difficult. Burns and Trauma, 2013, $1,2$.	0.7	1
172	Modifications of traditional pressure gloves for improved performance in scar flexion contracture prevention and fingertip circulation inspection. Burns and Trauma, 2014, 2, 146.	0.7	1
173	Innovative and propagable translational research model established for cell-based therapy at Chinese PLA General Hospital. Science China Life Sciences, 2016, 59, 1063-1067.	4.9	1
174	Manipulation of living cells with 450Ânm laser photobiomodulation. Journal of Photochemistry and Photobiology B: Biology, 2020, 209, 111896.	3.8	1
175	A New Target of the Four-Herb Chinese Medicine for Wound Repair Promoted by Mitochondrial Metabolism Using Protein Acetylation Analysis. Medical Science Monitor, 2022, 28, e934816.	1.1	1
176	Small molecules facilitate single factor-mediated sweat gland cell reprogramming. Military Medical Research, 2022, 9, 13.	3 . 4	1
177	Innovation, Translation, and Cooperation. International Journal of Lower Extremity Wounds, 2016, 15, 17-18.	1.1	0
178	Optimization and enrichment of induced cardiomyocytes derived from mouse fibroblasts by reprogramming with cardiac transcription factors. Molecular Medicine Reports, 2017, 17, 3912-3920.	2.4	0
179	Characterization of the Skin Bacteriome and Histology Changes in Diabetic Pigs. International Journal of Lower Extremity Wounds, 2022, , 153473462211008.	1.1	0