Carmela Fimognari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3574265/publications.pdf

Version: 2024-02-01

118 papers 4,497 citations

32 h-index 59 g-index

120 all docs

120 docs citations

times ranked

120

6592 citing authors

#	Article	IF	Citations
1	The Evaluation of Physical Activity Habits in North Italian People before and during COVID-19 Quarantine: A Pilot Study. International Journal of Environmental Research and Public Health, 2022, 19, 1660.	2.6	1
2	Anticancer potential of allicin: A review. Pharmacological Research, 2022, 177, 106118.	7.1	34
3	Synthesis, in vitro cytotoxicity,Âmolecular docking and ADME study of some indolin-2-one linked 1,2,3-triazole derivatives. Computational Biology and Chemistry, 2022, 97, 107641.	2.3	4
4	Discovery of Sulforaphane as an Inducer of Ferroptosis in U-937 Leukemia Cells: Expanding Its Anticancer Potential. Cancers, 2022, 14, 76.	3.7	9
5	Characterization of the Biological Activity of the Ethanolic Extract from the Roots of Cannabis sativa L. Grown in Aeroponics. Antioxidants, 2022, 11, 860.	5.1	7
6	Coffee in cancer chemoprevention: an updated review. Expert Opinion on Drug Metabolism and Toxicology, 2021, 17, 69-85.	3.3	11
7	Natural Products as Inducers of Non-Canonical Cell Death: A Weapon against Cancer. Cancers, 2021, 13, 304.	3.7	41
8	Marine Anthraquinones: Pharmacological and Toxicological Issues. Marine Drugs, 2021, 19, 272.	4.6	17
9	The Alcoholic Bark Extract of Terminalia Arjuna Exhibits Cytotoxic and Cytostatic Activity on Jurkat Leukemia Cells. Venoms and Toxins, 2021, 1, 56-66.	0.3	3
10	Spiky Gold Nanoparticles for the Photothermal Eradication of Colon Cancer Cells. Nanomaterials, 2021, 11, 1608.	4.1	11
11	Janus Kinase Inhibitors and Coronavirus Disease (COVID)-19: Rationale, Clinical Evidence and Safety Issues. Pharmaceuticals, 2021, 14, 738.	3.8	29
12	Pomegranate bioactive constituents target multiple oncogenic and oncosuppressive signaling for cancer prevention and intervention. Seminars in Cancer Biology, 2021, 73, 265-293.	9.6	28
13	Balanced dual acting compounds targeting aromatase and estrogen receptor \hat{l}_{\pm} as an emerging therapeutic opportunity to counteract estrogen responsive breast cancer. European Journal of Medicinal Chemistry, 2021, 224, 113733.	5 . 5	11
14	Synthesis and Biological Evaluation of New Bis-Indolinone Derivatives Endowed with Cytotoxic Activity. Molecules, 2021, 26, 6277.	3.8	0
15	Antitumor Potential of Marine and Freshwater Lectins. Marine Drugs, 2020, 18, 11.	4.6	30
16	Marine Cyanobacteria and Microalgae Metabolites—A Rich Source of Potential Anticancer Drugs. Marine Drugs, 2020, 18, 476.	4.6	56
17	Overview of the Anticancer Potential of the "King of Spices―Piper nigrum and Its Main Constituent Piperine. Toxins, 2020, 12, 747.	3.4	30
18	Vaccination with early ferroptotic cancer cells induces efficient antitumor immunity., 2020, 8, e001369.		220

#	Article	IF	Citations
19	On a Beam of Light: Photoprotective Activities of the Marine Carotenoids Astaxanthin and Fucoxanthin in Suppression of Inflammation and Cancer. Marine Drugs, 2020, 18, 544.	4.6	16
20	Sulforaphane Potentiates Anticancer Effects of Doxorubicin and Cisplatin and Mitigates Their Toxic Effects. Frontiers in Pharmacology, 2020, 11, 567.	3.5	31
21	Curcumin-1,2,3-Triazole Conjugation for Targeting the Cancer Apoptosis Machinery. Molecules, 2020, 25, 3066.	3.8	14
22	Targeting topoisomerase II with trypthantrin derivatives: Discovery of 7-((2-(dimethylamino)ethyl)amino)indolo[2,1-b]quinazoline-6,12-dione as an antiproliferative agent and to treat cancer. European Journal of Medicinal Chemistry, 2020, 202, 112504.	5 . 5	24
23	Plasmaâ€activated medium as an innovative anticancer strategy: Insight into its cellular and molecular impact on in vitro leukemia cells. Plasma Processes and Polymers, 2020, 17, 2000007.	3.0	18
24	Deuterium Incorporation Protects Cells from Oxidative Damage. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-13.	4.0	2
25	Overview of the Anticancer Profile of Avenanthramides from Oat. International Journal of Molecular Sciences, 2019, 20, 4536.	4.1	31
26	Alkaloids for cancer prevention and therapy: Current progress and future perspectives. European Journal of Pharmacology, 2019, 858, 172472.	3.5	182
27	Hemidesmus indicus induces apoptosis via proteasome inhibition and generation of reactive oxygen species. Scientific Reports, 2019, 9, 7199.	3.3	11
28	Identification of a new tamoxifen-xanthene hybrid as pro-apoptotic anticancer agent. Bioorganic Chemistry, 2019, 86, 538-549.	4.1	17
29	Novel polyamine-based Histone deacetylases-Lysine demethylase 1 dual binding inhibitors. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 1001-1004.	2.2	22
30	Natural Products to Fight Cancer: A Focus on Juglans regia. Toxins, 2018, 10, 469.	3.4	46
31	Neuroprotective Effect of Caffeic Acid Phenethyl Ester in A Mouse Model of Alzheimer's Disease Involves Nrf2/HO-1 Pathway. , 2018, 9, 605.		97
32	Hemidesmus indicus induces immunogenic death in human colorectal cancer cells. Oncotarget, 2018, 9, 24443-24456.	1.8	19
33	In Vitro Study of the Cytotoxic, Cytostatic, and Antigenotoxic Profile of Hemidesmus indicus (L.) R.Br. (Apocynaceae) Crude Drug Extract on T Lymphoblastic Cells. Toxins, 2018, 10, 70.	3.4	22
34	Protective Effects of 6-(Methylsulfinyl)hexyl Isothiocyanate on \widehat{Al}^2 1-42-Induced Cognitive Deficit, Oxidative Stress, Inflammation, and Apoptosis in Mice. International Journal of Molecular Sciences, 2018, 19, 2083.	4.1	29
35	The potential effects of <i>Ocimum basilicum</i> on health: a review of pharmacological and toxicological studies. Expert Opinion on Drug Metabolism and Toxicology, 2018, 14, 679-692.	3.3	58
36	Naphthalene diimide-polyamine hybrids as antiproliferative agents: Focus on the architecture of the polyamine chains. European Journal of Medicinal Chemistry, 2017, 128, 107-122.	5 . 5	17

#	Article	IF	Citations
37	Nrf2: a potential therapeutic target for naturally occurring anticancer drugs?. Expert Opinion on Therapeutic Targets, 2017, 21, 781-793.	3.4	32
38	Cold Atmospheric Plasma Induces Apoptosis and Oxidative Stress Pathway Regulation in T-Lymphoblastoid Leukemia Cells. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-13.	4.0	67
39	Marine Sponge Natural Products with Anticancer Potential: An Updated Review. Marine Drugs, 2017, 15, 310.	4.6	103
40	The Combination of Physical Exercise with Muscle-Directed Antioxidants to Counteract Sarcopenia: A Biomedical Rationale for Pleiotropic Treatment with Creatine and Coenzyme Q10. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-19.	4.0	22
41	Introduction to the Toxins Special Issue on Dietary and Non-Dietary Phytochemicals and Cancer. Toxins, 2017, 9, 12.	3.4	1
42	The Fast-Halo Assay for the Detection of DNA Damage. Methods in Molecular Biology, 2017, 1644, 75-93.	0.9	11
43	Possible Effects of Dietary Anthocyanins on Diabetes and Insulin Resistance. Current Drug Targets, 2017, 18, 629-640.	2.1	16
44	Antileukemic Activity of Sulforaphane. Reference Series in Phytochemistry, 2017, , 301-317.	0.4	1
45	Creatine Prevents the Structural and Functional Damage to Mitochondria in Myogenic, Oxidatively Stressed C2C12 Cells and Restores Their Differentiation Capacity. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-12.	4.0	27
46	Withania somnifera Induces Cytotoxic and Cytostatic Effects on Human T Leukemia Cells. Toxins, 2016, 8, 147.	3.4	30
47	Ellagitannins in Cancer Chemoprevention and Therapy. Toxins, 2016, 8, 151.	3.4	83
48	Antileukemic Activity of Sulforaphane. , 2016, , 1-17.		0
49	New insights into the trophic and cytoprotective effects of creatine in in vitro and in vivo models of cell maturation. Amino Acids, 2016, 48, 1897-1911.	2.7	24
50	Inhibition of Cancer Cell Proliferation and Antiradical Effects of Decoction, Hydroalcoholic Extract, and Principal Constituents of <scp><i>Hemidesmus indicus</i></scp> R. Br Phytotherapy Research, 2015, 29, 857-863.	5.8	6
51	Atmospheric Nonâ€Equilibrium Plasma Promotes Cell Death and Cellâ€Cycle Arrest in a Lymphoma Cell Line. Plasma Processes and Polymers, 2015, 12, 1354-1363.	3.0	29
52	Potential Effects of Pomegranate Polyphenols in Cancer Prevention and Therapy. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-19.	4.0	125
53	Role of Oxidative RNA Damage in Chronic-Degenerative Diseases. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-8.	4.0	57
54	Cytotoxic and Antitumor Activity of Sulforaphane: The Role of Reactive Oxygen Species. BioMed Research International, 2015, 2015, 1-9.	1.9	66

#	Article	IF	CITATIONS
55	Study of the Cytotoxic Effects of the New Synthetic Isothiocyanate CM9 and Its Fullerene Derivative on Human T-Leukemia Cells. Toxins, 2015, 7, 535-552.	3.4	6
56	In vitro anti-angiogenic effects of Hemidesmus indicus in hypoxic and normoxic conditions. Journal of Ethnopharmacology, 2015, 162, 261-269.	4.1	7
57	Anticancer Mechanism of Sulfur-Containing Compounds. The Enzymes, 2015, 37, 167-192.	1.7	24
58	Broad targeting of resistance to apoptosis in cancer. Seminars in Cancer Biology, 2015, 35, S78-S103.	9.6	535
59	Isothiocyanate Synthetic Analogs: Biological Activities, Structure-Activity Relationships and Synthetic Strategies. Mini-Reviews in Medicinal Chemistry, 2014, 14, 963-977.	2.4	18
60	Antileukemic Activity of Sulforaphane in Primary Blasts from Patients Affected by Myelo- and Lympho-Proliferative Disorders and in Hypoxic Conditions. PLoS ONE, 2014, 9, e101991.	2.5	19
61	Exploring the effects of isothiocyanates on chemotherapeutic drugs. Expert Opinion on Drug Metabolism and Toxicology, 2014, 10, 25-38.	3.3	19
62	Sulforaphane as a Promising Molecule for Fighting Cancer. Cancer Treatment and Research, 2014, 159, 207-223.	0.5	100
63	Alkaline Nuclear Dispersion Assays for the Determination of DNA Damage at the Single Cell Level. Methods in Molecular Biology, 2014, 1094, 49-70.	0.9	5
64	Determination of Phytomarkers in Pharmaceutical Preparations of <i>Hemidesmus indicus </i> Roots by Micellar Electrokinetic Chromatography and High-Performance Liquid Chromatography–Mass Spectrometry. Analytical Letters, 2014, 47, 2629-2642.	1.8	7
65	Natural compounds to overcome cancer chemoresistance: toxicological and clinical issues. Expert Opinion on Drug Metabolism and Toxicology, 2014, 10, 1677-1690.	3.3	49
66	Novel polyamine analogues: From substrates towards potential inhibitors of monoamine oxidases. European Journal of Medicinal Chemistry, 2013, 70, 88-101.	5 . 5	15
67	Exploiting RNA as a new biomolecular target for synthetic polyamines. Gene, 2013, 524, 232-240.	2.2	7
68	Hemidesmus indicus induces apoptosis as well as differentiation in a human promyelocytic leukemic cell line. Journal of Ethnopharmacology, 2013, 147, 84-91.	4.1	25
69	Sweet Chestnut (<i>Castanea sativa</i> Mill.) Bark Extract: Cardiovascular Activity and Myocyte Protection against Oxidative Damage. Oxidative Medicine and Cellular Longevity, 2013, 2013, 1-10.	4.0	46
70	Metabolic and toxicological considerations of botanicals in anticancer therapy. Expert Opinion on Drug Metabolism and Toxicology, 2012, 8, 819-832.	3.3	15
71	Antitumor Effects of Anthocyanins: Focus on Apoptosis. , 2012, , 49-68.		2
72	Design, synthesis and biological evaluation of new naphtalene diimides bearing isothiocyanate functionality. European Journal of Medicinal Chemistry, 2012, 48, 124-131.	5 . 5	16

#	Article	IF	Citations
73	Natural isothiocyanates: Genotoxic potential versus chemoprevention. Mutation Research - Reviews in Mutation Research, 2012, 750, 107-131.	5.5	97
74	Sulforaphane Potentiates RNA Damage Induced by Different Xenobiotics. PLoS ONE, 2012, 7, e35267.	2.5	11
75	Mitochondrial Pathway Mediates the Antileukemic Effects of Hemidesmus Indicus, a Promising Botanical Drug. PLoS ONE, 2011, 6, e21544.	2.5	33
76	Creatine as an antioxidant. Amino Acids, 2011, 40, 1385-1396.	2.7	148
77	Sulforaphane induces DNA single strand breaks in cultured human cells. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2010, 689, 65-73.	1.0	52
78	Cytotoxic effect of potato aspartic proteases (StAPs) on Jurkat T cells. Fìtoterapìâ, 2010, 81, 329-335.	2.2	13
79	Specific Drug Transporter Genotypes Are Significantly Associated with Increased Rates of Major and Complete Molecular Responses In Newly Diagnosed Chronic Myeloid Leukemia Patients Treated with Imatinib \hat{a} 6" A TOPS Correlative Substudy. Blood, 2010, 116, 670-670.	1.4	0
80	Protective effect of creatine against RNA damage. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2009, 670, 59-67.	1.0	32
81	Apoptosis induction by sulfurâ€containing compounds in malignant and nonmalignant human cells. Environmental and Molecular Mutagenesis, 2009, 50, 171-189.	2.2	19
82	Apoptosis and Modulation of Cell Cycle Control by Bile Acids in Human Leukemia T Cells. Annals of the New York Academy of Sciences, 2009, 1171, 264-269.	3.8	16
83	Association Between Imatinib (IM) Transporters and Metabolizing Enzymes Genotype and Response in Newly Diagnosed Chronic Myeloid Leukemia (CML) Patients (Pts) Is Influenced by Ethnicity Blood, 2009, 114, 3283-3283.	1.4	0
84	RNA as a new target for toxic and protective agents. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2008, 648, 15-22.	1.0	16
85	Chemoprevention of Cancer by Isothiocyanates and Anthocyanins: Mechanisms of Action and Structure-Activity Relationship. Current Medicinal Chemistry, 2008, 15, 440-447.	2.4	70
86	Interaction of the Isothiocyanate Sulforaphane with Drug Disposition and Metabolism: Pharmacological and Toxicological Implications. Current Drug Metabolism, 2008, 9, 668-678.	1.2	46
87	Induction of differentiation in human promyelocytic cells by the isothiocyanate sulforaphane. In Vivo, 2008, 22, 317-20.	1.3	16
88	Sulforaphane as a promising molecule for fighting cancer. Mutation Research - Reviews in Mutation Research, 2007, 635, 90-104.	5.5	196
89	Combination of Doxorubicin and Sulforaphane for Reversing Doxorubicin-Resistant Phenotype in Mouse Fibroblasts with p53Ser220 Mutation. Annals of the New York Academy of Sciences, 2007, 1095, 62-69.	3.8	24
90	Multidrug Resistance Gene (MDR1) Polymorphisms May Serve as Predictors of Resistance to Imatinib in Chronic Phase Chronic Myeloid Leukemia Patients Blood, 2007, 110, 1946-1946.	1.4	0

#	Article	IF	Citations
91	Cell-cycle specificity of sulforaphane-mediated apoptosis in Jurkat T-leukemia cells. In Vivo, 2007, 21, 377-80.	1.3	13
92	Sulforaphane increases the efficacy of doxorubicin in mouse fibroblasts characterized by p53 mutations. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2006, 601, 92-101.	1.0	43
93	Effect of sulforaphane on micronucleus induction in cultured human lymphocytes by four different mutagens. Environmental and Molecular Mutagenesis, 2005, 46, 260-267.	2.2	31
94	A mutated p53 status did not prevent the induction of apoptosis by sulforaphane, a promising anti-cancer drug. Investigational New Drugs, 2005, 23, 195-203.	2.6	16
95	In vitro Antitumor Activity of Cyanidin-3-O-Î ² -Glucopyranoside. Chemotherapy, 2005, 51, 332-335.	1.6	22
96	Micronucleus formation and induction of apoptosis by different isothiocyanates and a mixture of isothiocyanates in human lymphocyte cultures. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2005, 582, 1-10.	1.7	28
97	In vitro anticancer activity of cyanidin-3-O-beta-glucopyranoside: effects on transformed and non-transformed T lymphocytes. Anticancer Research, 2005, 25, 2837-40.	1.1	6
98	A mixture of isothiocyanates induces cyclin B1- and p53-mediated cell-cycle arrest and apoptosis of human T lymphoblastoid cells. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2004, 554, 205-214.	1.0	7
99	Induction of apoptosis in two human leukemia cell lines as well as differentiation in human promyelocytic cells by cyanidin-3-O-β-glucopyranoside. Biochemical Pharmacology, 2004, 67, 2047-2056.	4.4	75
100	Isothiocyanates as novel cytotoxic and cytostatic agents: molecular pathway on human transformed and non-transformed cells. Biochemical Pharmacology, 2004, 68, 1133-1138.	4.4	44
101	The New Isothiocyanate 4-(Methylthio)Butylisothiocyanate Selectively Affects Cell-Cycle Progression and Apoptosis Induction of Human Leukemia Cells. Investigational New Drugs, 2004, 22, 119-129.	2.6	37
102	Effect of cyanidin 3-O-?-glucopyranoside on micronucleus induction in cultured human lymphocytes by four different mutagens. Environmental and Molecular Mutagenesis, 2004, 43, 45-52.	2.2	18
103	Sulforaphane Modulates Cell Cycle and Apoptosis in Transformed and Non-transformed Human T Lymphocytes. Annals of the New York Academy of Sciences, 2003, 1010, 393-398.	3.8	39
104	Lack of correlation between environmental or biological indicators of benzene exposure at parts per billion levels and micronuclei induction. Environmental Research, 2003, 91, 135-142.	7.5	26
105	Growth inhibition, cell-cycle arrest and apoptosis in human T-cell leukemia by the isothiocyanate sulforaphane. Carcinogenesis, 2002, 23, 581-586.	2.8	203
106	Mutagenic and clastogenic activity of gastric juice in human gastric diseases. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2002, 514, 125-132.	1.7	3
107	Cyclin D3 and p53 mediate sulforaphane-induced cell cycle delay and apoptosis in non-transformed human T lymphocytes. Cellular and Molecular Life Sciences, 2002, 59, 2004-2012.	5.4	42
108	Micronuclei induction, cell cycle delay and apoptosis as markers of cellular stress caused by ursodeoxycholic acid in human lymphocytes. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2001, 495, 1-9.	1.7	16

#	Article	IF	CITATIONS
109	Increased cytogenetic damage detected by FISH analysis on micronuclei in peripheral lymphocytes from alcoholics. Mutagenesis, 2000, 15, 517-523.	2.6	59
110	NEW IN VITRO APPROACHES TO EXPLORE CELLULAR AND MOLECULAR EVENTS RELATED TO CARCINOGENESIS. Pharmacological Research, 2000, 41, 385-390.	7.1	1
111	Influence of nitroreductase and O-acetyltransferase on the mutagenicity of substituted nitrobenzothiophenamines in Salmonella typhimurium. Chemico-Biological Interactions, 1999, 118, 99-111.	4.0	14
112	Flow cytometric analysis of genetic damage, effect on cell cycle progression, and apoptosis by thiophanate-methyl in human lymphocytes., 1999, 33, 173-176.		20
113	Indicators of genetic damage in alcoholics: reversibility after alcohol abstinence. Hepato-Gastroenterology, 1999, 46, 1664-8.	0.5	19
114	Synthesis, metabolism and structure–mutagenicity relationships of novel 4-nitro-(imidazoles and) Tj ETQq0 0 0 of Mutagenesis, 1998, 397, 293-301.	o rgBT /Ov 1.0	erlock 10 Tf ! 18
115	Cytogenetic effects of Metalaxyl on human and animal chromosomes. Mutation Research - Genetic Toxicology Testing and Biomonitoring of Environmental Or Occupational Exposure, 1996, 369, 81-86.	1.2	34
116	The genetic and non-genetic toxicity of the fungicide Vinclozolin. Mutagenesis, 1996, 11, 445-453.	2.6	42
117	A Cytogenetic Approach to the Study of Genotoxic Effects of Fungicides: An in Vitro Study in Lymphocyte Cultures with Thiophanate-methyl. ATLA Alternatives To Laboratory Animals, 1996, 24, 597-601.	1.0	6
118	Analysis of metabolism and genotoxicity of 5-nitro-3-thiophenecarboxanilides in bacterial, mammalian and human cells. Mutagenesis, 1995, 10, 171-177.	2.6	12