
## **Brian Keith Sorrell**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3573814/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Internal pressurization and convective gas flow in some emergent freshwater macrophytes.<br>Limnology and Oceanography, 1992, 37, 1420-1433.                                | 3.1 | 312       |
| 2  | Are Phragmites-dominated wetlands a net source or net sink of greenhouse gases?. Aquatic Botany, 2001, 69, 313-324.                                                         | 1.6 | 252       |
| 3  | Gas fluxes achieved by in situ convective flow in Phragmites australis. Aquatic Botany, 1996, 54, 151-163.                                                                  | 1.6 | 164       |
| 4  | Community recommendations on terminology and procedures used in flooding and low oxygen stress research. New Phytologist, 2017, 214, 1403-1407.                             | 7.3 | 146       |
| 5  | Testing the Growth Rate vs. Geochemical Hypothesis for latitudinal variation in plant nutrients.<br>Ecology Letters, 2007, 10, 1154-1163.                                   | 6.4 | 135       |
| 6  | Mangrove growth in New Zealand estuaries: the role of nutrient enrichment at sites with contrasting rates of sedimentation. Oecologia, 2007, 153, 633-641.                  | 2.0 | 125       |
| 7  | Mangrove Forest and Soil Development on a Rapidly Accreting Shore in New Zealand. Ecosystems, 2010, 13, 437-451.                                                            | 3.4 | 124       |
| 8  | Cosmopolitan Species As Models for Ecophysiological Responses to Global Change: The Common Reed<br>Phragmites australis. Frontiers in Plant Science, 2017, 8, 1833.         | 3.6 | 123       |
| 9  | Growth and root oxygen release by Typha latifolia and its effects on sediment methanogenesis.<br>Aquatic Botany, 1998, 61, 165-180.                                         | 1.6 | 114       |
| 10 | Controls on soil cellulose decomposition along a salinity gradient in a Phragmites australis wetland<br>in Denmark. Aquatic Botany, 1999, 64, 381-398.                      | 1.6 | 113       |
| 11 | Tracing the origin of Gulf Coast <i>Phragmites</i> (Poaceae): A story of longâ€distance dispersal and hybridization. American Journal of Botany, 2012, 99, 538-551.         | 1.7 | 113       |
| 12 | On the Difficulties of Measuring Oxygen Release by Root Systems of Wetland Plants. Journal of<br>Ecology, 1994, 82, 177.                                                    | 4.0 | 110       |
| 13 | Growth and morphology in relation to temperature and light availability during the establishment of three invasive aquatic plant species. Aquatic Botany, 2012, 102, 56-64. | 1.6 | 106       |
| 14 | Convective gas flow in Eleocharis sphacelata R. Br.: methane transport and release from wetlands.<br>Aquatic Botany, 1994, 47, 197-212.                                     | 1.6 | 100       |
| 15 | Ecophysiology of Wetland Plant Roots: A Modelling Comparison of Aeration in Relation to Species<br>Distribution. Annals of Botany, 2000, 86, 675-685.                       | 2.9 | 100       |
| 16 | Biogeochemistry of billabong sediments. II. Seasonal variations in methane production. Freshwater<br>Biology, 1992, 27, 435-445.                                            | 2.4 | 78        |
| 17 | Invasion strategies in clonal aquatic plants: are phenotypic differences caused by phenotypic plasticity or local adaptation?. Annals of Botany, 2010, 106, 813-822.        | 2.9 | 74        |
| 18 | Effect of external oxygen demand on radial oxygen loss by Juncus roots in titanium citrate solutions.<br>Plant, Cell and Environment, 1999, 22, 1587-1593.                  | 5.7 | 73        |

2

| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Oxygen transport in the submerged freshwater macrophyte Egeria densa planch. I. Oxygen production, storage and release. Aquatic Botany, 1987, 28, 63-80.                                                                     | 1.6 | 68        |
| 20 | Extreme Low Light Requirement for Algae Growth Underneath Sea Ice: A Case Study From Station<br>Nord, NE Greenland. Journal of Geophysical Research: Oceans, 2018, 123, 985-1000.                                            | 2.6 | 63        |
| 21 | Emissions of Greenhouse Gases CH4 and N2O from Low-gradient Streams in Agriculturally Developed<br>Catchments. Water, Air, and Soil Pollution, 2008, 188, 155-170.                                                           | 2.4 | 62        |
| 22 | Regime shifts between clear and turbid water in New Zealand lakes: Environmental correlates and<br>implications for management and restoration. New Zealand Journal of Marine and Freshwater<br>Research, 2009, 43, 701-712. | 2.0 | 61        |
| 23 | Exploring the borders of European Phragmites within a cosmopolitan genus. AoB PLANTS, 2012, 2012, pls020.                                                                                                                    | 2.3 | 61        |
| 24 | Biogeochemistry of billabong sediments. I. The effect of macrophytes. Freshwater Biology, 1991, 26, 209-226.                                                                                                                 | 2.4 | 59        |
| 25 | Algal Hot Spots in a Changing Arctic Ocean: Sea-Ice Ridges and the Snow-Ice Interface. Frontiers in Marine Science, 2018, 5, .                                                                                               | 2.5 | 58        |
| 26 | Methanotrophic bacteria and their activity on submerged aquatic macrophytes. Aquatic Botany, 2002, 72, 107-119.                                                                                                              | 1.6 | 52        |
| 27 | Oxygen Stress in Wetland Plants: Comparison of De-Oxygenated and Reducing Root Environments.<br>Functional Ecology, 1996, 10, 521.                                                                                           | 3.6 | 49        |
| 28 | Genetic diversity in three invasive clonal aquatic species in New Zealand. BMC Genetics, 2010, 11, 52.                                                                                                                       | 2.7 | 47        |
| 29 | Eleocharis sphacelata: internal gas transport pathways and modelling of aeration by pressurized flow and diffusion. New Phytologist, 1997, 136, 433-442.                                                                     | 7.3 | 44        |
| 30 | SEPARATING THE EFFECTS OF PARTIAL SUBMERGENCE AND SOIL OXYGEN DEMAND ON PLANT PHYSIOLOGY.<br>Ecology, 2008, 89, 193-204.                                                                                                     | 3.2 | 44        |
| 31 | Die-back of Phragmites australis: influence on the distribution and rate of sediment methanogenesis.<br>Biogeochemistry, 1997, 36, 173-188.                                                                                  | 3.5 | 43        |
| 32 | Effects of water depth and substrate on growth and morphology of Eleocharis sphacelata:<br>implications for culm support and internal gas transport. Aquatic Botany, 2002, 73, 93-106.                                       | 1.6 | 43        |
| 33 | Internal methane transport through <i><scp>J</scp>uncus effusus</i> : experimental manipulation of morphological barriers to test above―and belowâ€ground diffusion limitation. New Phytologist, 2012, 196, 799-806.         | 7.3 | 42        |
| 34 | Removal of snow cover inhibits spring growth of Arctic ice algae through physiological and behavioral effects. Polar Biology, 2014, 37, 471-481.                                                                             | 1.2 | 37        |
| 35 | Airspace structure and mathematical modelling of oxygen diffusion, aeration and anoxia in Eleocharis sphacelata R. Br. Roots. Marine and Freshwater Research, 1994, 45, 1529.                                                | 1.3 | 36        |
| 36 | Oxygen transport in the submerged freshwater macrophyte Egeria densa planch. II. Role of lacunar gas<br>pressures. Aquatic Botany, 1988, 31, 93-106.                                                                         | 1.6 | 34        |

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Do tropical wetland plants possess convective gas flow mechanisms?. New Phytologist, 2011, 190, 379-386.                                                                                                                  | 7.3 | 34        |
| 38 | Convective gas flow and internal aeration in Eleocharis sphacelata in relation to water depth.<br>Journal of Ecology, 2000, 88, 778-789.                                                                                  | 4.0 | 33        |
| 39 | Methane Fluxes from an Australian Floodplain Wetland: The Importance of Emergent Macrophytes.<br>Journal of the North American Benthological Society, 1995, 14, 582-598.                                                  | 3.1 | 32        |
| 40 | Convective gas flow development and the maximum depths achieved by helophyte vegetation in lakes.<br>Annals of Botany, 2010, 105, 165-174.                                                                                | 2.9 | 32        |
| 41 | A low-cost remotely operated vehicle (ROV) with an optical positioning system for under-ice measurements and sampling. Cold Regions Science and Technology, 2018, 151, 148-155.                                           | 3.5 | 30        |
| 42 | Photobiology of sea ice algae during initial spring growth in Kangerlussuaq, West Greenland:<br>insights from imaging variable chlorophyll fluorescence of ice cores. Photosynthesis Research, 2012,<br>112, 103-115.     | 2.9 | 29        |
| 43 | Nutrient removal potential and biomass production by Phragmites australis and Typha latifolia on<br>European rewetted peat and mineral soils. Science of the Total Environment, 2020, 747, 141102.                        | 8.0 | 28        |
| 44 | H + exchange and nutrient uptake by roots of the emergent hydrophytes, Cyperus involucratus Rottb.,<br>Eleocharis sphacelata R. Br. and Juncus ingens N. A. Wakef New Phytologist, 1993, 125, 85-92.                      | 7.3 | 26        |
| 45 | Effects of water vapour pressure deficit and stomatal conductance on photosynthesis, internal pressurization and convective flow in three emergent wetland plants. Plant and Soil, 2003, 253, 71-79.                      | 3.7 | 26        |
| 46 | Regulation of root anaerobiosis and carbon translocation by light and root aeration in Isoetes alpinus. Plant, Cell and Environment, 2004, 27, 1102-1111.                                                                 | 5.7 | 26        |
| 47 | Errors in measurements of aquatic macrophyte gas exchange due to oxygen storage in internal<br>airspaces. Aquatic Botany, 1986, 24, 103-114.                                                                              | 1.6 | 24        |
| 48 | The interactive effect of Juncus effusus and water table position on mesocosm methanogenesis and methane emissions. Plant and Soil, 2016, 400, 45-54.                                                                     | 3.7 | 24        |
| 49 | Ammonium and nitrate are both suitable inorganic nitrogen forms for the highly productive wetland<br>grass Arundo donax , a candidate species for wetland paludiculture. Ecological Engineering, 2017, 105,<br>379-386.   | 3.6 | 24        |
| 50 | Effects of sea-ice light attenuation and CDOM absorption in the water below the Eurasian sector of central Arctic Ocean (>88°N). Polar Research, 2015, 34, 23978.                                                         | 1.6 | 23        |
| 51 | Summer–winter transitions in Antarctic ponds I: The physical environment. Antarctic Science, 2011, 23,<br>235-242.                                                                                                        | 0.9 | 20        |
| 52 | Summer meltwater and spring sea ice primary production, light climate and nutrients in an Arctic estuary, Kangerlussuaq, west Greenland. Arctic, Antarctic, and Alpine Research, 2018, 50, .                              | 1.1 | 20        |
| 53 | Assessing nutrient responses and biomass quality for selection of appropriate paludiculture crops.<br>Science of the Total Environment, 2019, 664, 1150-1161.                                                             | 8.0 | 20        |
| 54 | Invasive submerged freshwater macrophytes are more plastic in their response to light intensity than<br>to the availability of free CO <sub>2</sub> in airâ€equilibrated water. Freshwater Biology, 2015, 60,<br>929-943. | 2.4 | 19        |

| #  | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Is colonization of sea ice by diatoms facilitated by increased surface roughness in growing ice crystals?. Polar Biology, 2017, 40, 593-602.                                                                        | 1.2 | 17        |
| 56 | Phragmites australis: How do genotypes of different phylogeographic origins differ from their<br>invasive genotypes in growth, nitrogen allocation and gas exchange?. Biological Invasions, 2016, 18,<br>2563-2576. | 2.4 | 16        |
| 57 | An under-ice bloom of mixotrophic haptophytes in low nutrient and freshwater-influenced Arctic waters. Scientific Reports, 2021, 11, 2915.                                                                          | 3.3 | 16        |
| 58 | Inter-specific differences in photosynthetic carbon uptake, photosynthate partitioning and<br>extracellular organic carbon release by deep-water characean algae. Freshwater Biology, 2001, 46,<br>453-464.         | 2.4 | 15        |
| 59 | Variation in wetland invertebrate communities in lowland acidic fens and swamps. Freshwater<br>Biology, 2008, 53, 727-744.                                                                                          | 2.4 | 14        |
| 60 | N:P ratios, $\hat{l}'15N$ fractionation and nutrient resorption along a nitrogen to phosphorus limitation gradient in an oligotrophic wetland complex. Aquatic Botany, 2011, 94, 93-101.                            | 1.6 | 14        |
| 61 | Photosynthesis of co-existing Phragmites haplotypes in their non-native range: are characteristics determined by adaptations derived from their native origin?. AoB PLANTS, 2013, 5, .                              | 2.3 | 14        |
| 62 | Decadal timescale variability in ecosystem properties in the ponds of the McMurdo Ice Shelf, southern<br>Victoria Land, Antarctica. Antarctic Science, 2014, 26, 219-230.                                           | 0.9 | 14        |
| 63 | Phylogenetic diversity shapes salt tolerance in Phragmites australis estuarine populations in East<br>China. Scientific Reports, 2020, 10, 17645.                                                                   | 3.3 | 14        |
| 64 | Summer-winter transitions in Antarctic ponds II: Biological responses. Antarctic Science, 2011, 23, 243-254.                                                                                                        | 0.9 | 13        |
| 65 | Nitrogen and carbon limitation of planktonic primary production and<br>phytoplankton–bacterioplankton coupling in ponds on the McMurdo Ice Shelf, Antarctica.<br>Environmental Research Letters, 2013, 8, 035043.   | 5.2 | 13        |
| 66 | Submerged freshwater plant communities do not show species complementarity effect in wetland mesocosms. Biology Letters, 2018, 14, 20180635.                                                                        | 2.3 | 13        |
| 67 | Transient pressure gradients in the lacunar system of the submerged macrophyte Egeria densa Planch<br>Aquatic Botany, 1991, 39, 99-108.                                                                             | 1.6 | 12        |
| 68 | Water velocity and irradiance effects on internal transport and metabolism of methane in submerged<br>Isoetes alpinus and Potamogeton crispus. Aquatic Botany, 2004, 79, 189-202.                                   | 1.6 | 12        |
| 69 | Regression analysis of growth responses to water depth in three wetland plant species. AoB PLANTS, 2012, 2012, pls043-pls043.                                                                                       | 2.3 | 12        |
| 70 | Oxygen diffusion and dark respiration in aquatic macrophytes. Plant, Cell and Environment, 1989, 12, 293-299.                                                                                                       | 5.7 | 11        |
| 71 | Soil and vegetation responses to hydrological manipulation in a partially drained polje fen in New<br>Zealand. Wetlands Ecology and Management, 2007, 15, 361-383.                                                  | 1.5 | 11        |
| 72 | Microbial population responses in three stratified Antarctic meltwater ponds during the autumn freeze. Antarctic Science, 2012, 24, 571-588.                                                                        | 0.9 | 11        |

| #  | Article                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Minimum Fe requirement and toxic tissue concentration of Fe in Phragmites australis: A tool for alleviating Fe-deficiency in constructed wetlands. Ecological Engineering, 2018, 118, 152-160.         | 3.6 | 11        |
| 74 | Exploring Spatial Heterogeneity of Antarctic Sea Ice Algae Using an Autonomous Underwater Vehicle<br>Mounted Irradiance Sensor. Frontiers in Earth Science, 2019, 7, .                                 | 1.8 | 10        |
| 75 | Ecological Aspects of Microbes and Microbial Communities Inhabiting the Rhizosphere of Wetland Plants. , 2006, , 205-238.                                                                              |     | 10        |
| 76 | The Impact of Hydrological Restoration on Benthic Aquatic Invertebrate Communities in a New Zealand Wetland. Restoration Ecology, 2011, 19, 747-757.                                                   | 2.9 | 9         |
| 77 | Nutrient kinetics in submerged plant beds: A mesocosm study simulating constructed drainage wetlands. Ecological Engineering, 2018, 122, 263-270.                                                      | 3.6 | 9         |
| 78 | Biomethane Yield from Different European Phragmites australis Genotypes, Compared with Other<br>Herbaceous Wetland Species Grown at Different Fertilization Regimes. Resources, 2020, 9, 57.           | 3.5 | 9         |
| 79 | Are landscape-based wetland condition indices reflected by invertebrate and diatom communities?.<br>Wetlands Ecology and Management, 2011, 19, 73-88.                                                  | 1.5 | 8         |
| 80 | Arctic Sea Ice Ecology. Springer Polar Sciences, 2020, , .                                                                                                                                             | 0.1 | 8         |
| 81 | Will low primary production rates in the Amundsen Basin (Arctic Ocean) remain low in a future ice-free setting, and what governs this production?. Journal of Marine Systems, 2020, 205, 103287.       | 2.1 | 8         |
| 82 | Geographically distinct Ceratophyllum demersum populations differ in growth, photosynthetic responses and phenotypic plasticity to nitrogen availability. Functional Plant Biology, 2012, 39, 774.     | 2.1 | 8         |
| 83 | Plant traits in response to raising groundwater levels in wetland restoration: evidence from three case studies. Applied Vegetation Science, 2006, 9, 251.                                             | 1.9 | 8         |
| 84 | Gas exchange and growth responses to nutrient enrichment in invasive Glyceria maxima and native<br>New Zealand Carex species. Aquatic Botany, 2012, 103, 37-47.                                        | 1.6 | 7         |
| 85 | Closely related freshwater macrophyte species, <i><scp>C</scp>eratophyllum demersum</i> and<br><i><scp>C</scp>.Âsubmersum</i> , differ in temperature response. Freshwater Biology, 2014, 59, 777-788. | 2.4 | 7         |
| 86 | Does <i>Juncus effusus</i> enhance methane emissions from grazed pastures on peat?. Biogeosciences, 2015, 12, 5667-5676.                                                                               | 3.3 | 7         |
| 87 | Summer–winter transitions in Antarctic ponds: III. Chemical changes. Antarctic Science, 2012, 24, 121-130.                                                                                             | 0.9 | 6         |
| 88 | The effects of ZnO nanoparticles on leaf litter decomposition under natural sunlight. Environmental<br>Science: Nano, 2019, 6, 1180-1188.                                                              | 4.3 | 6         |
| 89 | Mechanical properties of the lacunar gas in Egeria densa Planch. shoots. Aquatic Botany, 1996, 53,<br>47-60.                                                                                           | 1.6 | 4         |
| 90 | Acclimation to light and avoidance of photoinhibition in Typha latifolia is associated with high<br>photosynthetic capacity and xanthophyll pigment content. Functional Plant Biology, 2017, 44, 774.  | 2.1 | 4         |

| #   | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Carbon assimilation through a vertical light gradient in the canopy of invasive herbs grown under<br>different temperature regimes is determined by leaf and whole-plant architecture. AoB PLANTS, 2020,<br>12, plaa031. | 2.3 | 4         |
| 92  | Acute and prolonged effects of variable salinity on growth, gas exchange and photobiology of eelgrass (Zostera marina L.). Aquatic Botany, 2020, 165, 103236.                                                            | 1.6 | 4         |
| 93  | Preface: Wetland ecosystems—functions and use in a changing climate. Hydrobiologia, 2021, 848,<br>3255-3258.                                                                                                             | 2.0 | 4         |
| 94  | Upwelling Irradiance below Sea Ice—PAR Intensities and Spectral Distributions. Journal of Marine Science and Engineering, 2021, 9, 830.                                                                                  | 2.6 | 4         |
| 95  | Photobiological Effects on Ice Algae of a Rapid Whole-Fjord Loss of Snow Cover during Spring<br>Growth in Kangerlussuaq, a West Greenland Fjord. Journal of Marine Science and Engineering, 2021, 9,<br>814.             | 2.6 | 4         |
| 96  | Lacunar gas discharge: a valid estimate of photosynthetic rates in submerged macrophytes?. Plant, Cell and Environment, 1987, 10, 515-518.                                                                               | 5.7 | 3         |
| 97  | A Comparison of Decimeter Scale Variations of Physical and Photobiological Parameters in a Late<br>Winter First-Year Sea Ice in Southwest Greenland. Journal of Marine Science and Engineering, 2021, 9,<br>60.          | 2.6 | 3         |
| 98  | Shade and salinity responses of two dominant coastal wetland grasses: implications for light competition at the transition zone. Annals of Botany, 2021, 128, 469-480.                                                   | 2.9 | 3         |
| 99  | Gas Transport and Exchange through Wetland Plant Aerenchyma. Soil Science Society of America<br>Book Series, 2015, , 177-196.                                                                                            | 0.3 | 2         |
| 100 | Concentrations of organic and inorganic bound nutrients and chlorophyll a in the Eurasian Basin,<br>Arctic Ocean, early autumn 2012. Regional Studies in Marine Science, 2017, 9, 69-75.                                 | 0.7 | 2         |
| 101 | Spring, Summer and Melting Sea Ice. Springer Polar Sciences, 2020, , 61-101.                                                                                                                                             | 0.1 | 2         |
| 102 | Probing the Response of the Amphibious Plant Butomus umbellatus to Nutrient Enrichment and<br>Shading by Integrating Eco-Physiological With Metabolomic Analyses. Frontiers in Plant Science, 2020,<br>11, 581787.       | 3.6 | 2         |
| 103 | Plant adaptations and microbial processes in wetlands. Annals of Botany, 2010, 105, 127-127.                                                                                                                             | 2.9 | 1         |
| 104 | Methods and Techniques in Sea Ice Ecology. Springer Polar Sciences, 2020, , 131-169.                                                                                                                                     | 0.1 | 1         |
| 105 | The Book, and Ecology of Sea Ice. Springer Polar Sciences, 2020, , 1-12.                                                                                                                                                 | 0.1 | 0         |
| 106 | Winter, Cold and Mature Sea Ice. Springer Polar Sciences, 2020, , 31-59.                                                                                                                                                 | 0.1 | 0         |
| 107 | Sea Ice in a Climate Change Context. Springer Polar Sciences, 2020, , 103-130.                                                                                                                                           | 0.1 | ο         |