Yolanda Saenz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3572165/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanisms of Resistance in Multiple-Antibiotic-Resistant Escherichia coli Strains of Human, Animal, and Food Origins. Antimicrobial Agents and Chemotherapy, 2004, 48, 3996-4001.	3.2	383
2	Antibiotic Resistance in Campylobacter Strains Isolated from Animals, Foods, and Humans in Spain in 1997–1998. Antimicrobial Agents and Chemotherapy, 2000, 44, 267-271.	3.2	252
3	β-Lactamases in Ampicillin-Resistant Escherichia coli Isolates from Foods, Humans, and Healthy Animals. Antimicrobial Agents and Chemotherapy, 2002, 46, 3156-3163.	3.2	247
4	Detection of CMY-2, CTX-M-14, and SHV-12 β-Lactamases in Escherichia coli Fecal-Sample Isolates from Healthy Chickens. Antimicrobial Agents and Chemotherapy, 2003, 47, 2056-2058.	3.2	170
5	Characterization of CTX-M and SHV extended-spectrum Â-lactamases and associated resistance genes in Escherichia coli strains of food samples in Tunisia. Journal of Antimicrobial Chemotherapy, 2007, 60, 1137-1141.	3.0	170
6	Detection of Escherichia coli harbouring extended-spectrum Â-lactamases of the CTX-M, TEM and SHV classes in faecal samples of wild animals in Portugal. Journal of Antimicrobial Chemotherapy, 2006, 58, 1311-1312.	3.0	156
7	Antibiotic resistance in Escherichia coli isolates obtained from animals, foods and humans in Spain. International Journal of Antimicrobial Agents, 2001, 18, 353-358.	2.5	145
8	Assessment of antibiotic susceptibility within lactic acid bacteria strains isolated from wine. International Journal of Food Microbiology, 2006, 111, 234-240.	4.7	135
9	Prevalence of extended-spectrum beta-lactamase-producing Escherichia coli isolates in faecal samples of broilers. Veterinary Microbiology, 2009, 138, 339-344.	1.9	130
10	qnr, aac(6′)-lb-cr and qepA genes in Escherichia coli and Klebsiella spp.: genetic environments and plasmid and chromosomal location. Journal of Antimicrobial Chemotherapy, 2012, 67, 886-897.	3.0	120
11	Mutations in gyrA and parC genes in nalidixic acid-resistant Escherichia coli strains from food products, humans and animals. Journal of Antimicrobial Chemotherapy, 2003, 51, 1001-1005.	3.0	119
12	Prevalence of antimicrobial resistance and resistance genes in faecal Escherichia coli isolates recovered from healthy pets. Veterinary Microbiology, 2008, 127, 97-105.	1.9	114
13	Coculture-inducible bacteriocin activity of Lactobacillus plantarum strain J23 isolated from grape must. Food Microbiology, 2007, 24, 482-491.	4.2	112
14	Monitoring and Characterization of Extended-Spectrum β-Lactamases in Escherichia coli Strains from Healthy and Sick Animals in Spain in 2003. Antimicrobial Agents and Chemotherapy, 2005, 49, 1262-1264.	3.2	109
15	Pseudomonas aeruginosa Utilizes Host-Derived Itaconate to Redirect Its Metabolism to Promote Biofilm Formation. Cell Metabolism, 2020, 31, 1091-1106.e6.	16.2	109
16	Antimicrobial activity of nisin against Oenococcus oeni and other wine bacteria. International Journal of Food Microbiology, 2007, 116, 32-36.	4.7	92
17	Spanish nationwide survey on Pseudomonas aeruginosa antimicrobial resistance mechanisms and epidemiology. Journal of Antimicrobial Chemotherapy, 2019, 74, 1825-1835.	3.0	92
18	Characterization of Antibiotic Resistance Genes and Virulence Factors in Faecal Enterococci of Wild Animals in Portugal. Zoonoses and Public Health, 2005, 52, 396-402.	1.4	89

#	Article	IF	CITATIONS
19	Mechanisms of Antibiotic Resistance in <i>Escherichia coli</i> Isolates Recovered from Wild Animals. Microbial Drug Resistance, 2008, 14, 71-77.	2.0	89
20	Genetic environment and location of the lnu(A) and lnu(B) genes in methicillin-resistant Staphylococcus aureus and other staphylococci of animal and human origin. Journal of Antimicrobial Chemotherapy, 2012, 67, 2804-2808.	3.0	86
21	Detection of CTX-M-1 and TEM-52 β-lactamases in Escherichia coli strains from healthy pets in Portugal. Journal of Antimicrobial Chemotherapy, 2004, 54, 960-961.	3.0	84
22	Prevalence and characterisation of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli isolates in healthy volunteers in Tunisia. European Journal of Clinical Microbiology and Infectious Diseases, 2012, 31, 1511-1516.	2.9	84
23	Prevalence and diversity of integrons and associated resistance genes in faecal Escherichia coli isolates of healthy humans in Spain. Journal of Antimicrobial Chemotherapy, 2008, 62, 934-937.	3.0	77
24	Detection and characterization of extended-spectrum Â-lactamases in Salmonella enterica strains of healthy food animals in Spain. Journal of Antimicrobial Chemotherapy, 2006, 58, 844-847.	3.0	74
25	Prevalence and diversity of extended-spectrum ß-lactamases in faecal Escherichia coli isolates from healthy humans in Spain. Clinical Microbiology and Infection, 2009, 15, 954-957.	6.0	71
26	Prevalence and Diversity of Integrons and Associated Resistance Genes in <i>Escherichia coli</i> Isolates from Poultry Meat in Tunisia. Foodborne Pathogens and Disease, 2009, 6, 1067-1073.	1.8	71
27	Effect of the efflux pump inhibitor Phe-Arg-Â-naphthylamide on the MIC values of the quinolones, tetracycline and chloramphenicol, in Escherichia coli isolates of different origin. Journal of Antimicrobial Chemotherapy, 2004, 53, 544-545.	3.0	69
28	Incl1 Plasmids Carrying <i>bla</i> _{CTX-M-1} or <i>bla</i> _{CMY-2} Genes in <i>Escherichia coli</i> from Healthy Humans and Animals in Tunisia. Microbial Drug Resistance, 2014, 20, 495-500.	2.0	66
29	Prevalence and Characterization of Extended-Spectrum Beta-Lactamase (ESBL)– and CMY-2–Producing <i>Escherichia coli</i> Isolates from Healthy Food-Producing Animals in Tunisia. Foodborne Pathogens and Disease, 2012, 9, 1137-1142.	1.8	65
30	CFTR-PTEN–dependent mitochondrial metabolic dysfunction promotes <i>Pseudomonas aeruginosa</i> airway infection. Science Translational Medicine, 2019, 11, .	12.4	65
31	Isolation of an SHV-12 β-Lactamase-Producing Escherichia coli Strain from a Dog with Recurrent Urinary Tract Infections. Antimicrobial Agents and Chemotherapy, 2000, 44, 3483-3484.	3.2	63
32	Detection of vanA and vanB2-containing enterococci from food samples in Spain, including Enterococcus faecium strains of CC17 and the new singleton ST425. International Journal of Food Microbiology, 2009, 133, 172-178.	4.7	63
33	Prevalence of broad-spectrum cephalosporin-resistant Escherichia coli isolates in food samples in Tunisia, and characterization of integrons and antimicrobial resistance mechanisms implicated. International Journal of Food Microbiology, 2010, 137, 281-286.	4.7	62
34	Class 1 integrons lacking qacEî"1 and sul1 genes in Escherichia coli isolates of food, animal and human origins. Veterinary Microbiology, 2010, 144, 493-497.	1.9	62
35	In Vitro Activities of Ketolide HMR3647, Macrolides, and Other Antibiotics against <i>Lactobacillus</i> , <i>Leuconostoc</i> , and <i>Pediococcus</i> Isolates. Antimicrobial Agents and Chemotherapy, 1999, 43, 3039-3041.	3.2	61
36	Detection and characterization of methicillin-resistant Staphylococcus pseudintermedius in healthy dogs in La Rioja, Spain. Comparative Immunology, Microbiology and Infectious Diseases, 2011, 34, 447-453.	1.6	61

#	Article	IF	CITATIONS
37	Interplay between MexAB-OprM and MexEF-OprN in clinical isolates of Pseudomonas aeruginosa. Scientific Reports, 2018, 8, 16463.	3.3	61
38	Escherichia coli of poultry food origin as reservoir of sulphonamide resistance genes and integrons. International Journal of Food Microbiology, 2011, 144, 497-502.	4.7	59
39	Genetic characterisation of CTX-M-15-producing Klebsiella pneumoniae and Escherichia coli strains isolated from stem cell transplant patients in Tunisia. International Journal of Antimicrobial Agents, 2008, 32, 308-314.	2.5	57
40	Genetic environment of sul genes and characterisation of integrons in Escherichia coli isolates of blood origin in a Spanish hospital. International Journal of Antimicrobial Agents, 2010, 35, 492-496.	2.5	56
41	High-level resistance to meropenem in clinical isolates of Pseudomonas aeruginosa in the absence of carbapenemases: role of active efflux and porin alterations. International Journal of Antimicrobial Agents, 2016, 48, 740-743.	2.5	55
42	Activity of Imipenem-Relebactam against a Large Collection of Pseudomonas aeruginosa Clinical Isolates and Isogenic β-Lactam-Resistant Mutants. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	54
43	Comparative study of the pln locus of the quorum-sensing regulated bacteriocin-producing L. plantarum J51 strain. International Journal of Food Microbiology, 2008, 128, 390-394.	4.7	53
44	Characterization of a new organization of the plantaricin locus in the inducible bacteriocin-producing Lactobacillus plantarum J23 of grape must origin. Archives of Microbiology, 2008, 189, 491-499.	2.2	47
45	Genetic diversity of the pln locus among oenological Lactobacillus plantarum strains. International Journal of Food Microbiology, 2009, 134, 176-183.	4.7	47
46	Loss of activity of ceftazidime-avibactam due to MexAB-OprM efflux and overproduction of AmpC cephalosporinase in Pseudomonas aeruginosa isolated from patients suffering from cystic fibrosis. International Journal of Antimicrobial Agents, 2018, 52, 697-701.	2.5	47
47	Carbapenem-resistant Pseudomonas aeruginosa strains from a Spanish hospital: Characterization of metallo-beta-lactamases, porin OprD and integrons. International Journal of Medical Microbiology, 2014, 304, 405-414.	3.6	46
48	Diversity of Genetic Lineages Among CTX-M-15 and CTX-M-14 Producing Escherichia coli Strains in a Tunisian Hospital. Current Microbiology, 2011, 62, 1794-1801.	2.2	44
49	In vivo selection of aac(6′)-lb-cr and mutations in the gyrA gene in a clinical qnrS1-positive Salmonella enterica serovar Typhimurium DT104B strain recovered after fluoroquinolone treatment. Journal of Antimicrobial Chemotherapy, 2010, 65, 1945-1949.	3.0	41
50	Nosocomial outbreak of methicillin- and linezolid-resistant Staphylococcus epidermidis associated with catheter-related infections in intensive care unit patients. International Journal of Medical Microbiology, 2011, 301, 354-358.	3.6	39
51	Mechanisms of Antibiotic Resistance inEscherichia coliIsolates Obtained from Healthy Children in Spain. Microbial Drug Resistance, 2002, 8, 321-327.	2.0	38
52	β-Lactamase Characterization inEscherichia coliIsolates with Diminished Susceptibility or Resistance to Extended-Spectrum Cephalosporins Recovered from Sick Animals in Spain. Microbial Drug Resistance, 2003, 9, 201-209.	2.0	38
53	Emergence of a multiresistant KPC-3 and VIM-1 carbapenemase-producing Escherichia coli strain in Spain. Journal of Antimicrobial Chemotherapy, 2014, 69, 1792-1795.	3.0	37
54	First Detection of CTX-M-1, CMY-2, and QnrB19 Resistance Mechanisms in Fecal <i>Escherichia coli</i> lsolates from Healthy Pets in Tunisia. Vector-Borne and Zoonotic Diseases, 2013, 13, 98-102.	1.5	36

#	Article	IF	CITATIONS
55	Predicting Pseudomonas aeruginosa susceptibility phenotypes from whole genome sequence resistome analysis. Clinical Microbiology and Infection, 2021, 27, 1631-1637.	6.0	36
56	Detection of Multiple-Antimicrobial Resistance and Characterization of the Implicated Genes in Escherichia coli Isolates from Foods of Animal Origin in Tunis. Journal of Food Protection, 2009, 72, 1082-1088.	1.7	35
57	Outbreak caused by a multi-resistant Klebsiella pneumoniae strain of new sequence type ST341 carrying new genetic environments of aac(6′)-lb-cr and qnrS1 genes in a neonatal intensive care unit in Spain. International Journal of Medical Microbiology, 2010, 300, 464-469.	3.6	35
58	Genetic characterization of the mechanisms of resistance to amoxicillin/clavulanate and third-generation cephalosporins in Salmonella enterica from three Spanish hospitals. International Microbiology, 2011, 14, 173-81.	2.4	35
59	Antimicrobial resistance and virulence of Pseudomonas spp. among healthy animals: concern about exolysin ExlA detection. Scientific Reports, 2020, 10, 11667.	3.3	33
60	Tn1546 structures and multilocus sequence typing of vanA-containing enterococci of animal, human and food origin. Journal of Antimicrobial Chemotherapy, 2010, 65, 1570-1575.	3.0	32
61	β-Lactamases, transferable quinolone resistance determinants, and class 1 integron-mediated antimicrobial resistance in human clinical Salmonella enterica isolates of non-Typhimurium serotypes. International Journal of Medical Microbiology, 2013, 303, 25-31.	3.6	32
62	Detection of virulence factors in high-level gentamicin-resistant Enterococcus faecalis and Enterococcus faecium isolates from a Tunisian hospital. Canadian Journal of Microbiology, 2007, 53, 372-379.	1.7	30
63	Characterization of Beta-lactamases in Faecal Enterobacteriaceae Recovered from Healthy Humans in Spain: Focusing on AmpC Polymorphisms. Microbial Ecology, 2015, 70, 132-140.	2.8	29
64	Characterization of carbapenem resistance mechanisms and integrons in Pseudomonas aeruginosa strains from blood samples in a French hospital. Journal of Medical Microbiology, 2016, 65, 311-319.	1.8	29
65	Polymorphisms of the pbp5 gene and correlation with ampicillin resistance in Enterococcus faecium isolates of animal origin. Journal of Medical Microbiology, 2007, 56, 236-240.	1.8	28
66	Changes in genetic lineages, resistance, and virulence in clinical methicillin-resistant Staphylococcus aureus in a Spanish hospital. Journal of Infection and Chemotherapy, 2013, 19, 233-242.	1.7	27
67	Faecal carriage of <i>Pseudomonas aeruginosa</i> in healthy humans: antimicrobial susceptibility and global genetic lineages. FEMS Microbiology Ecology, 2014, 89, 15-19.	2.7	27
68	Resistome and a Novel <i>bla</i> _{NDM-1} -Harboring Plasmid of an <i>Acinetobacter haemolyticus</i> Strain from a Children's Hospital in Puebla, Mexico. Microbial Drug Resistance, 2019, 25, 1023-1031.	2.0	27
69	Production of Antibacterial Coatings Through Atmospheric Pressure Plasma: a Promising Alternative for Combatting Biofilms in the Food Industry. Food and Bioprocess Technology, 2019, 12, 1251-1263.	4.7	27
70	Characterization of <i>van</i> A-Containing <i>Enterococcus faecium</i> Isolates Carrying Tn <i>5397</i> Like and Tn <i>916</i> /Tn <i>1545</i> Like Transposons in Wild Boars (<i>Sus Scrofa</i>). Microbial Drug Resistance, 2007, 13, 151-156.	2.0	26
71	Characterization of extended-spectrum β-lactamases and integrons in Escherichia coli isolates in a Spanish hospital. Journal of Medical Microbiology, 2008, 57, 916-920.	1.8	26
72	Cytokine Profiles Associated With Worse Prognosis in a Hospitalized Peruvian COVID-19 Cohort. Frontiers in Immunology, 2021, 12, 700921.	4.8	26

#	Article	IF	CITATIONS
73	Occurrence of extended-spectrum β-lactamase-producing Salmonella enterica in northern Spain with evidence of CTX-M-9 clonal spread among animals and humans. Clinical Microbiology and Infection, 2009, 15, 292-295.	6.0	25
74	First Detection ofblaIMI-2Gene in a Clinical Escherichia coli Strain. Antimicrobial Agents and Chemotherapy, 2012, 56, 1146-1147.	3.2	25
75	<i>Streptococcus agalactiae</i> from pregnant women: antibiotic and heavy-metal resistance mechanisms and molecular typing. Epidemiology and Infection, 2016, 144, 3205-3214.	2.1	25
76	Rational design of a Tn antigen mimic. Chemical Communications, 2011, 47, 5319.	4.1	24
77	Great phenotypic and genetic variation among successive chronic Pseudomonas aeruginosa from a cystic fibrosis patient. PLoS ONE, 2018, 13, e0204167.	2.5	24
78	Brettanomyces susceptibility to antimicrobial agents used in winemaking: in vitro and practical approaches. European Food Research and Technology, 2014, 238, 641-652.	3.3	23
79	Diversity of species and antimicrobial resistance determinants of staphylococci in superficial waters in Spain. FEMS Microbiology Ecology, 2017, 93, fiw208.	2.7	22
80	Lineages and Virulence Gene Content among Extended-Spectrum β-Lactamase-Producing Escherichia coli Strains of Food Origin in Tunisia. Journal of Food Protection, 2013, 76, 323-327.	1.7	21
81	Genotypic and phenotypic characterization of methicillin-resistant Staphylococcus aureus (MRSA) clones with high-level mupirocin resistance. Diagnostic Microbiology and Infectious Disease, 2016, 85, 213-217.	1.8	21
82	Caracterización de mecanismos de resistencia a carbapenémicos en aislados clÃnicos de Pseudomonas aeruginosa en un hospital español. Enfermedades Infecciosas Y MicrobiologÃa ClÃnica, 2017, 35, 141-147.	0.5	20
83	High prevalence of imipenem-resistant and metallo-beta-lactamase-producing <i>Pseudomonas aeruginosa</i> in the Burns Hospital in Tunisia: detection of a novel class 1 integron. Journal of Chemotherapy, 2019, 31, 120-126.	1.5	20
84	pMdT1, a small ColE1-like plasmid mobilizing a new variant of the aac(6')-lb-cr gene in Salmonella enterica serovar Typhimurium. Journal of Antimicrobial Chemotherapy, 2013, 68, 1277-1280.	3.0	19
85	Genetic Lineages and Antimicrobial Resistance in <i>Pseudomonas</i> spp. Isolates Recovered from Food Samples. Foodborne Pathogens and Disease, 2015, 12, 486-491.	1.8	19
86	Detection of Unrelated <i>Escherichia Coli</i> Strains Harboring Genes of CTX-M-15, OXA-1, and AAC(6')-lb-Cr Enzymes in a Tunisian Hospital and Characterization of Their Integrons and Virulence Factors. Journal of Chemotherapy, 2010, 22, 318-323.	1.5	18
87	Molecular epidemiology, resistance profiles and clinical features in clinical plasmid-mediated AmpC-producing Enterobacteriaceae. International Journal of Medical Microbiology, 2013, 303, 553-557.	3.6	18
88	Characterization of Plasmid-Mediated β-Lactamases in Fecal Colonizing Patients in the Hospital and Community Setting in Spain. Microbial Drug Resistance, 2014, 20, 301-304.	2.0	18
89	Characterization of antimicrobial resistance mechanisms in carbapenem-resistant Pseudomonas aeruginosa carrying IMP variants recovered from a Mexican Hospital. Infection and Drug Resistance, 2018, Volume 11, 1523-1536.	2.7	18
90	<i>Pseudomonas aeruginosa</i> Isolates from Spanish Children: Occurrence in Faecal Samples, Antimicrobial Resistance, Virulence, and Molecular Typing. BioMed Research International, 2018, 2018, 1-8.	1.9	18

#	Article	IF	CITATIONS
91	Association between Pseudomonas aeruginosa O-antigen serotypes, resistance profiles and high-risk clones: results from a Spanish nationwide survey. Journal of Antimicrobial Chemotherapy, 2019, 74, 3217-3220.	3.0	18
92	Atmospheric pressure cold plasma anti-biofilm coatings for 3D printed food tools. Innovative Food Science and Emerging Technologies, 2020, 64, 102404.	5.6	18
93	Phylogenetic relationships of Shiga toxin-producing Escherichia coli isolated from Peruvian children. Journal of Medical Microbiology, 2011, 60, 639-646.	1.8	18
94	Antimicrobial resistance and class I integrons in Salmonella enterica isolates from wild boars and BÃsaro pigs. International Microbiology, 2011, 14, 19-24.	2.4	18
95	New genetic environments of aac(6′)-lb-cr gene in a multiresistant Klebsiella oxytoca strain causing an outbreak in a pediatric intensive care unit. Diagnostic Microbiology and Infectious Disease, 2011, 69, 236-238.	1.8	17
96	Phenotypic and Genotypic Characterization of <i>Salmonella enterica</i> Recovered from Poultry Meat in Tunisia and Identification of New Genetic Traits. Vector-Borne and Zoonotic Diseases, 2012, 12, 10-16.	1.5	17
97	Intrahospitalary dissemination of Klebsiella pneumoniae carrying blaDHA-1 and qnrB4 genes within a novel complex class 1 integron. Diagnostic Microbiology and Infectious Disease, 2012, 73, 210-211.	1.8	17
98	Organometallic approach to polymer-protected antibacterial silver nanoparticles: optimal nanoparticle size-selection for bacteria interaction. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	16
99	Polymorphism in <i>pbp5</i> Gene Detected in Clinical <i>Enterococcus faecium</i> Strains with Different Ampicillin MICs from a Tunisian Hospital. Journal of Chemotherapy, 2008, 20, 436-440.	1.5	15
100	Molecular Characterization of Extended-Spectrum β-Lactamase-Producer Klebsiella pneumoniae Isolates Causing Neonatal Sepsis in Peru. American Journal of Tropical Medicine and Hygiene, 2016, 94, 285-288.	1.4	15
101	Occurrence of Pseudomonas spp. in Raw Vegetables: Molecular and Phenotypical Analysis of Their Antimicrobial Resistance and Virulence-Related Traits. International Journal of Molecular Sciences, 2021, 22, 12626.	4.1	15
102	Epidemiological features, resistance genes, and clones among community-onset methicillin-resistant Staphylococcus aureus (CO-MRSA) isolates detected in northern Spain. International Journal of Medical Microbiology, 2012, 302, 320-326.	3.6	14
103	Characterisation of plasmids implicated in the mobilisation of extended-spectrum and AmpC β-lactamase genes in clinical Salmonella enterica isolates and temporal stability of the resistance genotype. International Journal of Antimicrobial Agents, 2013, 42, 167-172.	2.5	14
104	Complete Proteome of a Quinolone-Resistant Salmonella Typhimurium Phage Type DT104B Clinical Strain. International Journal of Molecular Sciences, 2014, 15, 14191-14219.	4.1	14
105	Production and Antimicrobial Activity of Nisin Under Enological Conditions. Frontiers in Microbiology, 2018, 9, 1918.	3.5	14
106	Antibiofilm coatings through atmospheric pressure plasma for 3D printed surgical instruments. Surface and Coatings Technology, 2020, 399, 126163.	4.8	14
107	Oral Sub-Chronic Ochratoxin a Exposure Induces Gut Microbiota Alterations in Mice. Toxins, 2021, 13, 106.	3.4	14
108	Proton Nuclear Magnetic Resonance Spectroscopy as a Technique for Gentamicin Drug Susceptibility Studies with Escherichia coli ATCC 25922. Journal of Clinical Microbiology, 2015, 53, 2433-2438.	3.9	13

#	Article	IF	CITATIONS
109	Development and characterization of anti-biofilm coatings applied by Non-Equilibrium Atmospheric Plasma on stainless steel. Food Research International, 2022, 152, 109891.	6.2	13
110	Antibiotic resistance mechanisms in Acinetobacter spp. strains isolated from patients in a paediatric hospital in Mexico. Journal of Global Antimicrobial Resistance, 2020, 23, 120-129.	2.2	13
111	Characterization of Pseudomonas aeruginosa isolated from various environmental niches: New STs and occurrence of antibiotic susceptible "high-risk clones― International Journal of Environmental Health Research, 2020, 30, 643-652.	2.7	12
112	A novel class 1 integron array carrying bla VIM-2 genes and a new insertion sequence in a Pseudomonas aeruginosa strain isolated from a Spanish hospital. Journal of Medical Microbiology, 2011, 60, 1053-1054.	1.8	11
113	Comparison of Local Features from Two Spanish Hospitals Reveals Common and Specific Traits at Multiple Levels of the Molecular Epidemiology of Metallo-β-Lactamase-Producing Pseudomonas spp. Antimicrobial Agents and Chemotherapy, 2014, 58, 2454-2458.	3.2	11
114	Characterisation of VIM-2-producing Pseudomonas aeruginosa isolates from lower tract respiratory infections in a Spanish hospital. European Journal of Clinical Microbiology and Infectious Diseases, 2018, 37, 1847-1856.	2.9	11
115	In Vitro Activity of the New Ketolide HMR3647 in Comparison with Those of Macrolides and Pristinamycins against <i>Enterococcus</i> spp. Antimicrobial Agents and Chemotherapy, 1998, 42, 3279-3281.	3.2	10
116	Evaluation of four phenotypic methods to detect plasmid-mediated AmpC β-lactamases in clinical isolates. European Journal of Clinical Microbiology and Infectious Diseases, 2012, 31, 2037-2043.	2.9	10
117	Comparative subproteomic analysis of clinically acquired fluoroquinolone resistance and ciprofloxacin stress in <i>Salmonella</i> Typhimurium DT104B. Proteomics - Clinical Applications, 2017, 11, 1600107.	1.6	10
118	Antimicrobial Susceptibility Testing in Pseudomonas aeruginosa Biofilms: One Step Closer to a Standardized Method. Antibiotics, 2020, 9, 880.	3.7	10
119	MotilityJ: An open-source tool for the classification and segmentation of bacteria on motility images. Computers in Biology and Medicine, 2021, 136, 104673.	7.0	9
120	Characterization of Pc Promoter Variants of Class 1 Integrons inEscherichia coliIsolates from Poultry Meat. Foodborne Pathogens and Disease, 2013, 10, 1075-1077.	1.8	8
121	First Description of ablaVIM-2-Carrying Citrobacter freundii Isolate in Spain. Antimicrobial Agents and Chemotherapy, 2014, 58, 6331-6332.	3.2	8
122	Analysis of a long term starved Pseudomonas aeruginosa ATCC27853 in seawater microcosms. Microbial Pathogenesis, 2019, 134, 103595.	2.9	8
123	Promotion of biofilm production via atmospheric-pressure plasma-polymerization for biomedical applications. Applied Surface Science, 2022, 581, 152350.	6.1	8
124	Genetic Background of Quinolone Resistance in CTX-M-15-ProducingKlebsiella PneumoniaeandEscherichia coliStrains in Tunisia. Journal of Chemotherapy, 2010, 22, 66-67.	1,5	6
125	Streptococcus dysgalactiae subsp. equisimilis from invasive and non-invasive infections in Spain: combining epidemiology, molecular characterization, and genetic diversity. European Journal of Clinical Microbiology and Infectious Diseases, 2021, 40, 1013-1021.	2.9	6
126	Characterisation of carbapenem-resistance mechanisms in clinical Pseudomonas aeruginosa isolates recovered in a Spanish hospital. Enfermedades Infecciosas Y Microbiologia Clinica (English Ed), 2017, 35, 141-147.	0.3	5

#	Article	IF	CITATIONS
127	High clonality and diversity of virulence determinants among blaPSE-positive Salmonella Typhimurim isolates recovered in three geographically distant Spanish hospitals. Diagnostic Microbiology and Infectious Disease, 2012, 74, 426-428.	1.8	4
128	Genetic Background of Antimicrobial Resistance in Multiantimicrobial-Resistant Escherichia coli Isolates from Feces of Healthy Broiler Chickens in Tunisia. BioMed Research International, 2021, 2021, 1-7.	1.9	4
129	Whole Genome Analysis of Environmental Pseudomonas mendocina Strains: Virulence Mechanisms and Phylogeny. Genes, 2021, 12, 115.	2.4	3
130	Inhibition of biofilm formation on polystyrene substrates by atmospheric pressure plasma polymerization of siloxaneâ€based coatings. Plasma Processes and Polymers, 2021, 18, e2100097.	3.0	2
131	Antimicrobianos, resistencia antibacteriana y salud sostenible. , 2020, , 7-10.		2
132	Comparison of Local Features from Two Spanish Hospitals Reveals Common and Specific Traits at Multiple Levels of the Molecular Epidemiology of Metallo-β-Lactamase-Producing Pseudomonas spp. Antimicrobial Agents and Chemotherapy, 2014, 58, 4992-4992.	3.2	1
133	Could transformation mechanisms of acetylase-harboring pMdT1 plasmid be evaluated through proteomic tools in Escherichia coli?. Journal of Proteomics, 2016, 145, 103-111.	2.4	0
134	Bacterial Metabolic Adaptation Causes Chronic Lung Infection in Cystic Fibrosis. , 2019, , .		0
135	Metabolic Reprogramming Drives P. Aeruginosa Airway Infection. , 2019, , .		0
136	Immuno-Signaling Metabolites Fuel Respiratory Infection by Pseudomonas Aeruginosa. , 2020, , .		0