
Weixing Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/357186/publications.pdf Version: 2024-02-01

Μειχινό Ζηλο

#	Article	IF	CITATIONS
1	In Vitro Reconstitution of BRCA1-BARD1/RAD51-Mediated Homologous DNA Pairing. Methods in Molecular Biology, 2022, 2444, 207-225.	0.9	2
2	BRCA1/BARD1 is a nucleosome reader and writer. Trends in Biochemical Sciences, 2022, 47, 582-595.	7.5	14
3	Tumor Intrinsic PD-L1 Promotes DNA Repair in Distinct Cancers and Suppresses PARP Inhibitor–Induced Synthetic Lethality. Cancer Research, 2022, 82, 2156-2170.	0.9	23
4	Single-molecule visualization of human RECQ5 interactions with single-stranded DNA recombination intermediates. Nucleic Acids Research, 2021, 49, 285-305.	14.5	15
5	BRCA1/BARD1 site-specific ubiquitylation of nucleosomal H2A is directed by BARD1. Nature Structural and Molecular Biology, 2021, 28, 268-277.	8.2	58
6	RAD51AP1 mediates RAD51 activity through nucleosome interaction. Journal of Biological Chemistry, 2021, 297, 100844.	3.4	6
7	ATR/ATM-Mediated Phosphorylation of BRCA1 T1394 Promotes Homologous Recombinational Repair and G2–M Checkpoint Maintenance. Cancer Research, 2021, 81, 4676-4684.	0.9	14
8	The DNA-binding activity of USP1-associated factor 1 is required for efficient RAD51-mediated homologous DNA pairing and homology-directed DNA repair. Journal of Biological Chemistry, 2020, 295, 8186-8194.	3.4	10
9	NUCKS1 promotes RAD54 activity in homologous recombination DNA repair. Journal of Cell Biology, 2020, 219, .	5.2	27
10	Defining the influence of Rad51 and Dmc1 lineage-specific amino acids on genetic recombination. Genes and Development, 2019, 33, 1191-1207.	5.9	38
11	The BRCA Tumor Suppressor Network in Chromosome Damage Repair by Homologous Recombination. Annual Review of Biochemistry, 2019, 88, 221-245.	11.1	104
12	MiR223-3p promotes synthetic lethality in BRCA1-deficient cancers. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17438-17443.	7.1	22
13	Importance of homo-dimerization of Fanconi-associated nuclease 1 in DNA flap cleavage. DNA Repair, 2018, 64, 53-58.	2.8	6
14	RAD52 is required for RNA-templated recombination repair in post-mitotic neurons. Journal of Biological Chemistry, 2018, 293, 1353-1362.	3.4	69
15	Cryo-EM structures of human RAD51 recombinase filaments during catalysis of DNA-strand exchange. Nature Structural and Molecular Biology, 2017, 24, 40-46.	8.2	109
16	BRCA1–BARD1 promotes RAD51-mediated homologous DNA pairing. Nature, 2017, 550, 360-365.	27.8	262
17	Non-catalytic Roles for XPG with BRCA1 and BRCA2 in Homologous Recombination and Genome Stability. Molecular Cell, 2016, 61, 535-546.	9.7	42
18	Tolerance of DNA Mismatches in Dmc1 Recombinase-mediated DNA Strand Exchange. Journal of Biological Chemistry, 2016, 291, 4928-4938.	3.4	15

WEIXING ZHAO

#	Article	IF	CITATIONS
19	NUCKS1 is a novel RAD51AP1 paralog important for homologous recombination and genome stability. Nucleic Acids Research, 2015, 43, gkv859.	14.5	51
20	Promotion of BRCA2-Dependent Homologous Recombination by DSS1 via RPA Targeting and DNA Mimicry. Molecular Cell, 2015, 59, 176-187.	9.7	141
21	Base triplet stepping by the Rad51/RecA family of recombinases. Science, 2015, 349, 977-981.	12.6	145
22	Significance of ligand interactions involving Hop2-Mnd1 and the RAD51 and DMC1 recombinases in homologous DNA repair and XX ovarian dysgenesis. Nucleic Acids Research, 2015, 43, 4055-4066.	14.5	50
23	Solution Structure and DNA-binding Properties of the Winged Helix Domain of the Meiotic Recombination HOP2 Protein. Journal of Biological Chemistry, 2014, 289, 14682-14691.	3.4	13
24	Mechanistic insights into the role of Hop2-Mnd1 in meiotic homologous DNA pairing. Nucleic Acids Research, 2014, 42, 906-917.	14.5	52
25	Breast Cancer Proteins PALB2 and BRCA2 Stimulate Polymerase \hat{I} in Recombination-Associated DNA Synthesis at Blocked Replication Forks. Cell Reports, 2014, 6, 553-564.	6.4	72
26	Mechanistic Insights into RAD51-associated Protein 1 (RAD51AP1) Action in Homologous DNA Repair. Journal of Biological Chemistry, 2012, 287, 12343-12347.	3.4	40
27	RAD51-associated Protein 1 (RAD51AP1) Interacts with the Meiotic Recombinase DMC1 through a Conserved Motif. Journal of Biological Chemistry, 2011, 286, 37328-37334.	3.4	19
28	Biochemical Studies on Human Rad51-Mediated Homologous Recombination. Methods in Molecular Biology, 2011, 745, 421-435.	0.9	6
29	Mechanism of the ATP-dependent DNA end-resection machinery from Saccharomyces cerevisiae. Nature, 2010, 467, 108-111.	27.8	349
30	Visualizing the Disassembly of S. cerevisiae Rad51 Nucleoprotein Filaments. Journal of Molecular Biology, 2009, 388, 703-720.	4.2	24
31	Functional Role of BLAP75 in BLM-Topoisomerase IIIα-dependent Holliday Junction Processing. Journal of Biological Chemistry, 2008, 283, 15701-15708.	3.4	67
32	PII Is Important in Regulation of Nitrogen Metabolism but Not Required for Heterocyst Formation in the Cyanobacterium Anabaena sp. PCC 7120. Journal of Biological Chemistry, 2007, 282, 33641-33648.	3.4	30
33	A Membrane-Associated Mn-Superoxide Dismutase Protects the Photosynthetic Apparatus and Nitrogenase from Oxidative Damage in the Cyanobacterium Anabaena sp. PCC 7120. Plant and Cell Physiology, 2007, 48, 563-572.	3.1	40
34	MreB is important for cell shape but not for chromosome segregation of the filamentous cyanobacterium Anabaena sp. PCC 7120. Molecular Microbiology, 2007, 63, 1640-1652.	2.5	122
35	RbrA, a cyanobacterial rubrerythrin, functions as a FNR-dependent peroxidase in heterocysts in protection of nitrogenase from damage by hydrogen peroxide in Anabaena sp. PCC 7120. Molecular Microbiology, 2007, 66, 1219-1230.	2.5	53
36	Sample pretreatment microfluidic chip for DNA extraction from rat peripheral blood. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2007, 2, 74-78.	0.4	1

#	Article	IF	CITATIONS
37	Regulation of intracellular free calcium concentration during heterocyst differentiation by HetR and NtcA in Anabaena sp. PCC 7120. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11334-11339.	7.1	51
38	CcbP, a calcium-binding protein from Anabaena sp. PCC 7120, provides evidence that calcium ions regulate heterocyst differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 5744-5748.	7.1	69