
Diego Pizzeghello

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3571428/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Physiological effects of humic substances on higher plants. Soil Biology and Biochemistry, 2002, 34, 1527-1536.	8.8	728
2	Biostimulant activity of two protein hydrolyzates in the growth and nitrogen metabolism of maize seedlings. Journal of Plant Nutrition and Soil Science, 2009, 172, 237-244.	1.9	258
3	Plant biostimulants: physiological responses induced by protein hydrolyzed-based products and humic substances in plant metabolism. Scientia Agricola, 2016, 73, 18-23.	1.2	253
4	Effect of low molecular size humic substances on nitrate uptake and expression of genes involved in nitrate transport in maize (Zea mays L.). Journal of Experimental Botany, 2004, 55, 803-813.	4.8	226
5	High Molecular Size Humic Substances Enhance Phenylpropanoid Metabolism in Maize (Zea mays L.). Journal of Chemical Ecology, 2010, 36, 662-669.	1.8	168
6	Phosphorus forms and P-sorption properties in three alkaline soils after long-term mineral and manure applications in north-eastern Italy. Agriculture, Ecosystems and Environment, 2011, 141, 58-66.	5.3	153
7	Capsicum chinensis L. growth and nutraceutical properties are enhanced by biostimulants in a long-term period: chemical and metabolomic approaches. Frontiers in Plant Science, 2014, 5, 375.	3.6	151
8	Evaluation of Seaweed Extracts From Laminaria and Ascophyllum nodosum spp. as Biostimulants in Zea mays L. Using a Combination of Chemical, Biochemical and Morphological Approaches. Frontiers in Plant Science, 2018, 9, 428.	3.6	132
9	Root morphological and molecular responses induced by microalgae extracts in sugar beet (Beta) Tj ETQq1 10.	784314 rgB 2.8	T /Oyerlock
10	Humic substances induce lateral root formation and expression of the early auxin-responsive <i>IAA19</i> gene and DR5 synthetic element in <i>Arabidopsis</i> . Plant Biology, 2009, 12, 604-14.	3.8	99
11	Isopentenyladenosine and cytokinin-like activity of different humic substances. Journal of Geochemical Exploration, 2013, 129, 70-75.	3.2	98
12	Hormoneâ€like activity of humic substances in Fagus sylvaticae forests. New Phytologist, 2001, 151, 647-657.	7.3	96
13	Soil humic compounds and microbial communities in six spruce forests as function of parent material, slope aspect and stand age. Plant and Soil, 2009, 315, 47-65.	3.7	81
14	Biological Activity of Vegetal Extracts Containing Phenols on Plant Metabolism. Molecules, 2016, 21, 205.	3.8	75
15	Chemical and Biochemical Properties of Humic Substances Isolated from Forest Soils and Plant Growth. Soil Science Society of America Journal, 2000, 64, 639-645.	2.2	71
16	Relationship between soil test phosphorus and phosphorus release to solution in three soils after long-term mineral and manure application. Agriculture, Ecosystems and Environment, 2016, 233, 214-223.	5.3	71
17	Biostimulant activity of humic substances extracted from leonardites. Plant and Soil, 2017, 420, 119-134.	3.7	58
18	Chemical Characteristics and Biological Activity of Organic Substances Extracted from Soils by Root Exudates. Soil Science Society of America Journal, 2005, 69, 2012-2019.	2.2	57

DIEGO PIZZEGHELLO

#	Article	IF	CITATIONS
19	Humic-like substances from agro-industrial residues affect growth and nitrogen assimilation in maize (Zea mays L.) plantlets. Journal of Geochemical Exploration, 2013, 129, 103-111.	3.2	56
20	Use of meat hydrolyzate derived from tanning residues as plant biostimulant for hydroponically grown maize. Journal of Plant Nutrition and Soil Science, 2013, 176, 287-295.	1.9	56
21	Phosphorus-related properties in the profiles of three Italian soils after long-term mineral and manure applications. Agriculture, Ecosystems and Environment, 2014, 189, 216-228.	5.3	56
22	Hormoneâ€like activities of humic substances in different forest ecosystems. New Phytologist, 2002, 155, 393-402.	7.3	50
23	Effect of a Compost and Its Water-Soluble Fractions on Key Enzymes of Nitrogen Metabolism in Maize Seedlings. Journal of Agricultural and Food Chemistry, 2009, 57, 11267-11276.	5.2	49
24	Humusica 1, article 5: Terrestrial humus systems and forms — Keys of classification of humus systems and forms. Applied Soil Ecology, 2018, 122, 75-86.	4.3	45
25	Hormone-like activity of the soil organic matter. Applied Soil Ecology, 2018, 123, 517-520.	4.3	38
26	Humusica 1, article 4: Terrestrial humus systems and forms — Specific terms and diagnostic horizons. Applied Soil Ecology, 2018, 122, 56-74.	4.3	33
27	Innovative Approaches to Evaluate Sugar Beet Responses to Changes in Sulfate Availability. Frontiers in Plant Science, 2018, 9, 14.	3.6	29
28	Metabolite-Targeted Analysis and Physiological Traits of Zea mays L. in Response to Application of a Leonardite-Humate and Lignosulfonate-Based Products for Their Evaluation as Potential Biostimulants. Agronomy, 2019, 9, 445.	3.0	29
29	Bioactivity of Size-Fractionated and Unfractionated Humic Substances From Two Forest Soils and Comparative Effects on N and S Metabolism, Nutrition, and Root Anatomy of Allium sativum L. Frontiers in Plant Science, 2020, 11, 1203.	3.6	29
30	Low-molecular-weight organic acids and hormone-like activity of dissolved organic matter in two forest soils in N Italy. Journal of Chemical Ecology, 2003, 29, 1549-1564.	1.8	20
31	Land Use Affects the Soil C Sequestration in Alpine Environment, NE Italy. Forests, 2017, 8, 197.	2.1	20
32	Molecular and Morphological Changes Induced by Leonardite-based Biostimulant in Beta vulgaris L Plants, 2019, 8, 181.	3.5	20
33	Snow vole (<i>Chionomys nivalis</i> Martins) affects the redistribution of soil organic matter and hormoneâ€like activity in the alpine ecosystem: ecological implications. Ecology and Evolution, 2015, 5, 4542-4554.	1.9	19
34	Topsoil organic matter properties in contrasted hedgerow vegetation types. Plant and Soil, 2014, 383, 337-348.	3.7	18
35	Biological activity of humic substances extracted from soils under different vegetation cover. Communications in Soil Science and Plant Analysis, 1999, 30, 621-634.	1.4	16
36	Short-Term Application of Polymer-Coated Mono-Ammonium Phosphate in a Calcareous Soil Affects the Pools of Available Phosphorus and the Growth of Hypericum × moserianum (L.). Frontiers in Sustainable Food Systems, 2019, 3, .	3.9	13

DIEGO PIZZEGHELLO

#	Article	IF	CITATIONS
37	Effectiveness of Humic Substances and Phenolic Compounds in Regulating Plant-Biological Functionality. Agronomy, 2020, 10, 1553.	3.0	12
38	Effects of moderate and high rates of biochar and compost on grapevine growth in a greenhouse experiment. AIMS Agriculture and Food, 2017, 2, 113-128.	1.6	9
39	Chemical analyses of archaeological sediments identified the ancient activity areas of an Iron age building at Rotzo (Vicenza, Italy). Quaternary International, 2013, 289, 101-112.	1.5	8
40	Chemical and Biochemical Properties of Soils Developed from Different Lithologies in Northwestern Spain (Galicia). Forests, 2017, 8, 135.	2.1	8
41	Fatty Acid Methyl Ester (FAME) Succession in Different Substrates as Affected by the Co-Application of Three Pesticides. PLoS ONE, 2015, 10, e0145501.	2.5	8
42	Wood-Based Compost Affects Soil Fertility and the Content of Available Forms of Nutrients in Vineyard and Field-Scale Agroecosystems. Agronomy, 2021, 11, 518.	3.0	4
43	Soil chemical analysis supports the identification of ancient breeding structures: The case-study of CÃ Tron (Venice, Italy). Quaternary International, 2012, 275, 128-136.	1.5	3