Eliane Piaggio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3571414/publications.pdf

Version: 2024-02-01

		186265	138484
58	3,953	28	58
papers	citations	h-index	g-index
62	62	62	6446
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Innate lymphoid cells: NK and cytotoxic ILC3 subsets infiltrate metastatic breast cancer lymph nodes. Oncolmmunology, 2022, 11, 2057396.	4.6	9
2	Tissue-resident FOLR2+ macrophages associate with CD8+ TÂcell infiltration in human breast cancer. Cell, 2022, 185, 1189-1207.e25.	28.9	166
3	Pseudocowpox virus, a novel vector to enhance the therapeutic efficacy of antitumor vaccination. Clinical and Translational Immunology, 2022, 11, e1392.	3.8	0
4	CD8+T cell responsiveness to anti-PD-1 is epigenetically regulated by Suv39h1 in melanomas. Nature Communications, 2022, 13, .	12.8	11
5	Humanized Mouse Models to Evaluate Cancer Immunotherapeutics. Annual Review of Cancer Biology, 2021, 5, 119-136.	4.5	25
6	Polyfunctional KLRG-1+CD57+ Senescent CD4+ T Cells Infiltrate Tumors and Are Expanded in Peripheral Blood From Breast Cancer Patients. Frontiers in Immunology, 2021, 12, 713132.	4.8	17
7	Autoimmunity affecting the biliary tract fuels the immunosurveillance of cholangiocarcinoma. Journal of Experimental Medicine, 2021, 218, .	8.5	20
8	Effects of interleukin-2 in immunostimulation and immunosuppression. Journal of Experimental Medicine, 2020, 217, .	8.5	100
9	In Vivo Analysis of Human Immune Responses in Immunodeficient Rats. Transplantation, 2020, 104, 715-723.	1.0	14
10	Tumor invasion in draining lymph nodes is associated with Treg accumulation in breast cancer patients. Nature Communications, 2020, 11, 3272.	12.8	106
11	Blockade of Stat3 oncogene addiction induces cellular senescence and reveals a cell-nonautonomous activity suitable for cancer immunotherapy. Oncolmmunology, 2020, 9, 1715767.	4.6	14
12	Immune gene expression in head and neck squamous cell carcinoma patients. European Journal of Cancer, 2019, 121, 210-223.	2.8	45
13	Clonally Expanded T Cells Reveal Immunogenicity of Rhabdoid Tumors. Cancer Cell, 2019, 36, 597-612.e8.	16.8	100
14	Efficient oral vaccination by bioengineering virus-like particles with protozoan surface proteins. Nature Communications, 2019, 10, 361.	12.8	70
15	Inhibition of PI3K pathway increases immune infiltrate in muscle-invasive bladder cancer. Oncolmmunology, 2019, 8, e1581556.	4.6	68
16	TLR3 Activation of Intratumoral CD103+ Dendritic Cells Modifies the Tumor Infiltrate Conferring Anti-tumor Immunity. Frontiers in Immunology, 2019, 10, 503.	4.8	24
17	IL2/Anti-IL2 Complex Combined with CTLA-4, But Not PD-1, Blockade Rescues Antitumor NK Cell Function by Regulatory T-cell Modulation. Cancer Immunology Research, 2019, 7, 443-457.	3.4	20
18	CD16+NKG2Ahigh Natural Killer Cells Infiltrate Breast Cancer–Draining Lymph Nodes. Cancer Immunology Research, 2019, 7, 208-218.	3.4	32

#	Article	IF	CITATIONS
19	Galectin-3 deficiency drives lupus-like disease by promoting spontaneous germinal centers formation via IFN- \hat{l}^3 . Nature Communications, 2018, 9, 1628.	12.8	24
20	CD39 Expression Defines Cell Exhaustion in Tumor-Infiltrating CD8+ T Cells. Cancer Research, 2018, 78, 115-128.	0.9	284
21	IL-17RA-Signaling Modulates CD8+ T Cell Survival and Exhaustion During Trypanosoma cruzi Infection. Frontiers in Immunology, 2018, 9, 2347.	4.8	39
22	Induction of anergic or regulatory tumor-specific CD4+ T cells in the tumor-draining lymph node. Nature Communications, 2018 , 9 , 2113 .	12.8	70
23	Humanized Mice for the Study of Immuno-Oncology. Trends in Immunology, 2018, 39, 748-763.	6.8	208
24	Tumor Necrosis Factor \hat{l}_{\pm} and Regulatory T Cells in Oncoimmunology. Frontiers in Immunology, 2018, 9, 444.	4.8	139
25	CD39 Expression Defines Cell Exhaustion in Tumor-Infiltrating CD8+ T Cells—Response. Cancer Research, 2018, 78, 5175-5175.	0.9	17
26	Inhibition of effector antigen-specific T cells by intradermal administration of heme oxygenase-1 inducers. Journal of Autoimmunity, 2017, 81, 44-55.	6.5	10
27	Mechanisms of Resistance to Immune Checkpoint Antibodies. Handbook of Experimental Pharmacology, 2017, 249, 109-128.	1.8	26
28	mRNA Expression levels of genes involved in antitumor immunity: Identification of a 3-gene signature associated with prognosis of muscle-invasive bladder cancer. Oncolmmunology, 2017, 6, e1358330.	4.6	15
29	Phenotype of NK-Like CD8(+) T Cells with Innate Features in Humans and Their Relevance in Cancer Diseases. Frontiers in Immunology, 2017, 8, 316.	4.8	46
30	Heparan sulfates targeting increases MHC class I- and MHC class II-restricted antigen presentation and CD8 + T-cell response. Vaccine, 2016, 34, 3093-3101.	3.8	4
31	Effective antitumor therapy based on a novel antibody-drug conjugate targeting the Tn carbohydrate antigen. Oncolmmunology, 2016, 5, e1171434.	4.6	18
32	Loss of immune tolerance to IL-2 in type 1 diabetes. Nature Communications, 2016, 7, 13027.	12.8	28
33	Regulatory T cells delay disease progression in Alzheimer-like pathology. Brain, 2016, 139, 1237-1251.	7.6	260
34	New Molecular and Cellular Mechanisms of Tolerance: Tolerogenic Actions of IL-2. Methods in Molecular Biology, 2016, 1371, 11-28.	0.9	5
35	Inhibition of the JAK/STAT Signaling Pathway in Regulatory T Cells Reveals a Very Dynamic Regulation of Foxp3 Expression. PLoS ONE, 2016, 11, e0153682.	2.5	30
36	Immunoendocrine dysbalance during uncontrolled T. cruzi infection is associated with the acquisition of a Th-1-like phenotype by Foxp3+ T cells. Brain, Behavior, and Immunity, 2015, 45, 219-232.	4.1	32

#	Article	IF	CITATIONS
37	Effector T Cells Boost Regulatory T Cell Expansion by IL-2, TNF, OX40, and Plasmacytoid Dendritic Cells Depending on the Immune Context. Journal of Immunology, 2015, 194, 999-1010.	0.8	38
38	Heterogeneous CD3 Expression Levels in Differing T Cell Subsets Correlate with the In Vivo Anti-CD3–Mediated T Cell Modulation. Journal of Immunology, 2015, 194, 2117-2127.	0.8	23
39	Potential limitations of IL-2 administration for the treatment of experimental acute graft-versus-host disease. Immunology Letters, 2014, 162, 173-184.	2.5	28
40	Beneficial role of regulatory T cells in a mouse model of Alzheimer's disease. Journal of Neuroimmunology, 2014, 275, 124.	2.3	2
41	Sustained stimulation and expansion of Tregs by IL2 control autoimmunity without impairing immune responses to infection, vaccination and cancer. Clinical Immunology, 2014, 151, 114-126.	3.2	44
42	Carbon monoxideâ€treated dendritic cells decrease β1â€integrin induction on CD8 ⁺ T cells and protect from type 1 diabetes. European Journal of Immunology, 2013, 43, 209-218.	2.9	27
43	Role of Cytokines in Thymus- Versus Peripherally Derived-Regulatory T Cell Differentiation and Function. Frontiers in Immunology, 2013, 4, 155.	4.8	44
44	Limitations of IL-2 and Rapamycin in Immunotherapy of Type 1 Diabetes. Diabetes, 2013, 62, 3120-3131.	0.6	41
45	Immune reconstitution is preserved in hematopoietic stem cell transplantation coadministered with regulatory T cells for GVHD prevention. Blood, 2011, 117, 2975-2983.	1.4	52
46	IL-2 reverses established type 1 diabetes in NOD mice by a local effect on pancreatic regulatory T cells. Journal of Experimental Medicine, 2010, 207, 1871-1878.	8.5	368
47	Pathogenic T cells have a paradoxical protective effect in murine autoimmune diabetes by boosting Tregs. Journal of Clinical Investigation, 2010, 120, 4558-4568.	8.2	154
48	Central Role of Defective Interleukin-2 Production in the Triggering of Islet Autoimmune Destruction. Immunity, 2008, 28, 687-697.	14.3	646
49	Multimerized T cell epitopes protect from experimental autoimmune diabetes by inducing dominant tolerance. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 9393-9398.	7.1	14
50	Foxp3 ⁺ CD25 ⁺ regulatory T cells specific for a neo-self-antigen develop at the double-positive thymic stage. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8453-8458.	7.1	92
51	Pertussis Toxin Reduces the Number of Splenic Foxp3+ Regulatory T Cells. Journal of Immunology, 2006, 177, 1552-1560.	0.8	57
52	T-Cell Homing to the Pancreas in Autoimmune Mouse Models of Diabetes: In Vivo MR Imaging. Radiology, 2005, 236, 579-587.	7.3	44
53	An Altered Self-Peptide with Superagonist Activity Blocks a CD8-Mediated Mouse Model of Type 1 Diabetes. Journal of Immunology, 2004, 172, 915-922.	0.8	21
54	Maintaining or breaking CD8+ T-cell tolerance to \hat{l}^2 islet cell antigens: lessons from transgenic mouse models. Journal of Autoimmunity, 2004, 22, 115-120.	6.5	4

#	Article	IF	CITATIONS
55	A transgenic mouse model for T-cell ignorance of a glial autoantigen. Journal of Autoimmunity, 2004, 22, 179-189.	6.5	7
56	Effective and selective immune surveillance of the brain by MHC class I-restricted cytotoxic T lymphocytes. European Journal of Immunology, 2003, 33, 1174-1182.	2.9	106
57	Trypanocidal Drug Benznidazole Impairs Lipopolysaccharide Induction of Macrophage Nitric Oxide Synthase Gene Transcription Through Inhibition of NF-ÎB Activation. Journal of Immunology, 2001, 167, 3422-3426.	0.8	28
58	Effects of halothane reexposure in female mice and their offspring. Reproductive Toxicology, 1999, 13, 361-367.	2.9	9