Hans van Meijl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3571336/publications.pdf Version: 2024-02-01

HANS VAN MEUL

#	Article	IF	CITATIONS
1	Land-based climate change mitigation measures can affect agricultural markets and food security. Nature Food, 2022, 3, 110-121.	14.0	61
2	Development of the Circular Bioeconomy: Drivers and Indicators. Sustainability, 2021, 13, 413.	3.2	143
3	How much multilateralism do we need? Effectiveness of unilateral agricultural mitigation efforts in the global context. Environmental Research Letters, 2021, 16, 104038.	5.2	4
4	Short- and long-term warming effects of methane may affect the cost-effectiveness of mitigation policies and benefits of low-meat diets. Nature Food, 2021, 2, 970-980.	14.0	21
5	Labor supply assumptions - A missing link in food security projections. Global Food Security, 2020, 25, 100328.	8.1	11
6	Afforestation for climate change mitigation: Potentials, risks and tradeâ€offs. Global Change Biology, 2020, 26, 1576-1591.	9.5	162
7	Are scenario projections overly optimistic about future yield progress?. Global Environmental Change, 2020, 64, 102120.	7.8	11
8	Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature, 2020, 585, 551-556.	27.8	413
9	Reply to: An appeal to cost undermines food security risks of delayed mitigation. Nature Climate Change, 2020, 10, 420-421.	18.8	2
10	Snakes and ladders: World development pathways' synergies and trade-offs through the lens of the Sustainable Development Goals. Journal of Cleaner Production, 2020, 267, 122147.	9.3	36
11	Modelling alternative futures of global food security: Insights from FOODSECURE. Global Food Security, 2020, 25, 100358.	8.1	35
12	How food secure are the green, rocky and middle roads: food security effects in different world development paths. Environmental Research Communications, 2020, 2, 031002.	2.3	17
13	Levelling the playing field for EU biomass usage. Economic Systems Research, 2019, 31, 158-177.	2.7	15
14	Key determinants of global land-use projections. Nature Communications, 2019, 10, 2166.	12.8	123
15	A multi-model assessment of food security implications of climate change mitigation. Nature Sustainability, 2019, 2, 386-396.	23.7	152
16	Making the Paris agreement climate targets consistent with food security objectives. Global Food Security, 2019, 23, 93-103.	8.1	46
17	Agricultural non-CO2 emission reduction potential in the context of the 1.5 °C target. Nature Climate Change, 2019, 9, 66-72.	18.8	139
18	Exploring SSP land-use dynamics using the IMAGE model: Regional and gridded scenarios of land-use change and land-based climate change mitigation. Global Environmental Change, 2018, 48, 119-135.	7.8	202

HANS VAN MEIJL

#	Article	IF	CITATIONS
19	Metrics, models and foresight for European sustainable food and nutrition security: The vision of the SUSFANS project. Agricultural Systems, 2018, 163, 45-57.	6.1	35
20	The Good, the Bad and the Uncertain: Bioenergy Use in the European Union. Energies, 2018, 11, 2703.	3.1	21
21	Comparing impacts of climate change and mitigation on global agriculture by 2050. Environmental Research Letters, 2018, 13, 064021.	5.2	93
22	Risk of increased food insecurity under stringent global climate change mitigation policy. Nature Climate Change, 2018, 8, 699-703.	18.8	319
23	REDD policy impacts on the agri-food sector and food security. Food Policy, 2017, 66, 73-87.	6.0	14
24	The impact of R&D on factor-augmenting technical change– an empirical assessment at the sector level. Economic Systems Research, 2017, 29, 385-417.	2.7	6
25	Assessing the Impact of Agricultural R&D Investments on Long-Term Projections of Food Security. Frontiers of Economics and Clobalization, 2017, , 1-17.	0.3	6
26	Assessing uncertainties in land cover projections. Global Change Biology, 2017, 23, 767-781.	9.5	103
27	Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm. Global Environmental Change, 2017, 42, 237-250.	7.8	523
28	Hotspots of uncertainty in landâ€use and landâ€cover change projections: a globalâ€scale model comparison. Global Change Biology, 2016, 22, 3967-3983.	9.5	171
29	RED versus REDD: Biofuel policy versus forest conservation. Economic Modelling, 2016, 52, 366-374.	3.8	15
30	Climate change impacts on agriculture in 2050 under a range of plausible socioeconomic and emissions scenarios. Environmental Research Letters, 2015, 10, 085010.	5.2	216
31	Model collaboration for the improved assessment of biomass supply, demand, and impacts. GCB Bioenergy, 2015, 7, 422-437.	5.6	54
32	Climate change effects on agriculture: Economic responses to biophysical shocks. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3274-3279.	7.1	568
33	The future of food demand: understanding differences in global economic models. Agricultural Economics (United Kingdom), 2014, 45, 51-67.	3.9	357
34	Why do global long-term scenarios for agriculture differ? An overview of the AgMIP Global Economic Model Intercomparison. Agricultural Economics (United Kingdom), 2014, 45, 3-20.	3.9	183
35	Impacts of increased bioenergy demand on global food markets: an AgMIP economic model intercomparison. Agricultural Economics (United Kingdom), 2014, 45, 103-116.	3.9	85

3

HANS VAN MEIJL

#	Article	IF	CITATIONS
37	Land-use change trajectories up to 2050: insights from a global agro-economic model comparison. Agricultural Economics (United Kingdom), 2014, 45, 69-84.	3.9	220
38	Comparing supply-side specifications in models of global agriculture and the food system. Agricultural Economics (United Kingdom), 2014, 45, 21-35.	3.9	68
39	The impact of the rebound effect of the use of first generation biofuels in the EU on greenhouse gas emissions: A critical review. Renewable and Sustainable Energy Reviews, 2014, 38, 393-403.	16.4	64
40	Agriculture and climate change in global scenarios: why don't the models agree. Agricultural Economics (United Kingdom), 2014, 45, 85-101.	3.9	172
41	Estimating the opportunity costs of reducing carbon dioxide emissions via avoided deforestation, using integrated assessment modelling. Land Use Policy, 2014, 41, 45-60.	5.6	28
42	RED vs. REDD: Biofuel Policy vs. Forest Conservation. SSRN Electronic Journal, 2013, , .	0.4	1
43	Indirect land use change: review of existing models and strategies for mitigation. Biofuels, 2012, 3, 87-100.	2.4	155
44	Impact of the EU Biofuels Directive on the EU Food Supply Chain. Journal of Food Products Marketing, 2011, 17, 373-385.	3.3	2
45	Global Impacts of European Agricultural and Biofuel Policies. Ecology and Society, 2011, 16, .	2.3	21
46	Impact of EU biofuel policies on world agricultural production and land use. Biomass and Bioenergy, 2011, 35, 2385-2390.	5.7	92
47	A multi-scale, multi-model approach for analyzing the future dynamics of European land use. Annals of Regional Science, 2008, 42, 57-77.	2.1	314
48	Will EU biofuel policies affect global agricultural markets?. European Review of Agricultural Economics, 2008, 35, 117-141.	3.1	202
49	Cross sector land use modelling framework. , 2008, , 159-180.		12
50	Economic and ecological consequences of four European land use scenarios. Land Use Policy, 2007, 24, 562-575.	5.6	89
51	The impact of different policy environments on agricultural land use in Europe. Agriculture, Ecosystems and Environment, 2006, 114, 21-38.	5.3	285
52	Differences in farm performance and adjustment to change: a perspective from The Netherlands , 2006, , 201-218.		1
53	Trade liberalization in the Doha Development Round. Economic Policy, 2005, 20, 350-391.	2.3	109
54	International diffusion of gains from biotechnology and the European Union's Common Agricultural Policy. Agricultural Economics (United Kingdom), 2004, 31, 307-316.	3.9	20

HANS VAN MEIJL

#	Article	IF	CITATIONS
55	International diffusion of gains from biotechnology and the European Union's Common Agricultural Policy. Agricultural Economics (United Kingdom), 2004, 31, 307-316.	3.9	8
56	Biotechnology boosts to crop productivity in China: trade and welfare implications. Journal of Development Economics, 2004, 75, 27-54.	4.5	103
57	Modernisation in agriculture: what makes a farmer adopt an innovation?. , 2003, 2, 328.		22
58	The Agenda 2000 CAP reform, world prices and GATT-WTO export constraints. European Review of Agricultural Economics, 2002, 29, 445-470.	3.1	37
59	Innovation and Farm Performance: The Case of Dutch Agriculture. , 2002, , 73-85.		13
60	Clobal models applied to agricultural and trade policies: a review and assessment. Agricultural Economics (United Kingdom), 2001, 26, 149-172.	3.9	68
61	Global models applied to agricultural and trade policies: a review and assessment. Agricultural Economics (United Kingdom), 2001, 26, 149-172.	3.9	68
62	The application of trade and growth theories to agriculture: a survey. Australian Journal of Agricultural and Resource Economics, 2000, 44, 505-542.	2.6	17
63	Endogenous International Technology Spillovers and Biased Technical Change in Agriculture. Economic Systems Research, 1999, 11, 31-48.	2.7	14
64	Trade, technology spillovers, and food production in China. Weltwirtschaftliches Archiv, 1998, 134, 423-449.	0.8	15
65	Measuring the Impact of Direct and Indirect R&D on the Productivity Growth of Industries: Using the Yale Technology Concordance. Economic Systems Research, 1997, 9, 205-211.	2.7	11
66	Measuring Intersectoral Spillovers: French Evidence. Economic Systems Research, 1997, 9, 25-46.	2.7	44