
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3570997/publications.pdf Version: 2024-02-01

Δυι Βενισαυίο

#	Article	lF	CITATIONS
1	Effect of Ni content on the microstructure and mechanical properties of TiNiN coatings. Applied Surface Science, 2022, 573, 151536.	6.1	9
2	Charged Particle Induced Etching and Functionalization of Two-Dimensional Materials. ECS Journal of Solid State Science and Technology, 2022, 11, 035011.	1.8	1
3	The influence of substrate bias on the surface morphology, microstructure and mechanical behaviour of TiNiN coatings. Applied Surface Science, 2022, 590, 153107.	6.1	8
4	Highly stable gold nanolayer membrane for efficient solar water evaporation under a harsh environment. Chemosphere, 2022, 299, 134394.	8.2	7
5	Dimensionally controlled graphene-based surfaces for photothermal membrane crystallization. Journal of Colloid and Interface Science, 2022, 623, 607-616.	9.4	11
6	Gel polymer dominated ion charging mechanisms within graphene nanochannels. Journal of Power Sources, 2022, 541, 231684.	7.8	14
7	Rejection of harsh pH saline solutions using graphene membranes. Carbon, 2021, 171, 240-247.	10.3	9
8	Application of Plasma-Printed Paper-Based SERS Substrate for Cocaine Detection. Sensors, 2021, 21, 810.	3.8	23
9	Bottomâ€Up Synthesis of Hexagonal Boron Nitride Nanoparticles with Intensityâ€Stabilized Quantum Emitters. Small, 2021, 17, e2008062.	10.0	13
10	Stress engineering of boron doped diamond thin films via micro-fabrication. APL Materials, 2021, 9, 061109.	5.1	0
11	Tuning Ta coating properties through chemical and plasma etching pre-treatment of NiTi wire substrates. Surface and Coatings Technology, 2021, 418, 127214.	4.8	5
12	Solvent-Exfoliated Hexagonal Boron Nitride Nanoflakes for Quantum Emitters. ACS Applied Nano Materials, 2021, 4, 10449-10457.	5.0	9
13	Vibrating boron-doped diamond electrode: A new, durable and highly sensitive tool for the detection of cadmium. Analytica Chimica Acta, 2021, 1188, 339166.	5.4	5
14	Non-invasive on-skin sensors for brain machine interfaces with epitaxial graphene. Journal of Neural Engineering, 2021, 18, 066035.	3.5	12
15	p-Type Epitaxial Graphene on Cubic Silicon Carbide on Silicon for Integrated Silicon Technologies. ACS Applied Nano Materials, 2020, 3, 830-841.	5.0	18
16	Nanohybrid TiN/Vertical graphene for high-performance supercapacitor applications. Energy Storage Materials, 2020, 26, 138-146.	18.0	54
17	Advanced RuO2 Thin Films for pH Sensing Application. Sensors, 2020, 20, 6432.	3.8	6
18	Valence Alignment of Mixed Ni–Fe Hydroxide Electrocatalysts through Preferential Templating on Graphene Edges for Enhanced Oxygen Evolution. ACS Nano, 2020, 14, 11327-11340.	14.6	42

AVI BENDAVID

#	Article	IF	CITATIONS
19	Characterization of tantalum and tantalum nitride films on Ti6Al4V substrate prepared by filtered cathodic vacuum arc deposition for biomedical applications. Surface and Coatings Technology, 2019, 365, 24-32.	4.8	22
20	WO ₃ nanolayer coated 3D-graphene/sulfur composites for high performance lithium/sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 4596-4603.	10.3	47
21	Hot spot formation in focused-ion-beam-fabricated YBa2Cu3O7â^'x nanobridges with high critical current densities. Nanotechnology, 2019, 30, 325301.	2.6	4
22	Direct plasma printing of nano-gold from an inorganic precursor. Journal of Materials Chemistry C, 2019, 7, 6369-6374.	5.5	27
23	Oriented Graphenes from Plasma-Reformed Coconut Oil for Supercapacitor Electrodes. Nanomaterials, 2019, 9, 1679.	4.1	4
24	Evaluation of surface properties of low density polyethylene (LDPE) films tailored by atmospheric pressure non-thermal plasma (APNTP) assisted co-polymerization and immobilization of chitosan for improvement of antifouling properties. Materials Science and Engineering C, 2019, 94, 150-160.	7.3	13
25	Conformal carbon coating on WS2 nanotubes for excellent electrochemical performance of lithium-ion batteries. Nanotechnology, 2019, 30, 035401.	2.6	5
26	Enhanced Photocatalytic Hydrogen Evolution with TiO ₂ –TiN Nanoparticle Composites. Journal of Physical Chemistry C, 2019, 123, 3740-3749.	3.1	37
27	Cytocompatibility assessment of Ti-Nb-Zr-Si thin film metallic glasses with enhanced osteoblast differentiation for biomedical applications. Colloids and Surfaces B: Biointerfaces, 2019, 173, 109-120.	5.0	30
28	Cytocompatible tantalum films on Ti6Al4V substrate by filtered cathodic vacuum arc deposition. Bioelectrochemistry, 2018, 122, 32-39.	4.6	16
29	Tuning the plasmonic response of TiN nanoparticles synthesised by the transferred arc plasma technique. Nanoscale, 2018, 10, 7566-7574.	5.6	31
30	Recent progress in plasma-assisted synthesis and modification of 2D materials. 2D Materials, 2018, 5, 032002.	4.4	58
31	Ambient air synthesis of multi-layer CVD graphene films for low-cost, efficient counter electrode material in dye-sensitized solar cells. FlatChem, 2018, 8, 1-8.	5.6	7
32	Evaluation of mechanism of cold atmospheric pressure plasma assisted polymerization of acrylic acid on low density polyethylene (LDPE) film surfaces: Influence of various gaseous plasma pretreatment. Applied Surface Science, 2018, 439, 991-998.	6.1	23
33	Tribo-corrosion performance of filtered-arc-deposited tantalum coatings on Ti-13Nb-13Zr alloy for bio-implants applications. Wear, 2018, 400-401, 31-42.	3.1	27
34	Fabrication of nitrogen-containing diamond-like carbon film by filtered arc deposition as conductive hard-coating film. Japanese Journal of Applied Physics, 2018, 57, 01AE07.	1.5	6
35	Biomineralization of osteoblasts on DLC coated surfaces for bone implants. Biointerphases, 2018, 13, 041002.	1.6	16
36	Nanobioceramic thin films: Surface modifications and cellular responses on titanium implants. , 2018, , 147-173.		3

#	Article	IF	CITATIONS
37	Fabrication of sputtered titanium vanadium nitride (TiVN) thin films for micro-supercapacitors. Journal of Materials Science: Materials in Electronics, 2018, 29, 12457-12465.	2.2	13
38	Single-step ambient-air synthesis of graphene from renewable precursors as electrochemical genosensor. Nature Communications, 2017, 8, 14217.	12.8	122
39	Roomâ€Temperature Singleâ€Photon Emission from Oxidized Tungsten Disulfide Multilayers. Advanced Optical Materials, 2017, 5, 1600939.	7.3	27
40	RuO ₂ -coated vertical graphene hybrid electrodes for high-performance solid-state supercapacitors. Journal of Materials Chemistry A, 2017, 5, 17293-17301.	10.3	132
41	Corrosion behaviour and microstructure of tantalum film on Ti6Al4V substrate by filtered cathodic vacuum arc deposition. Thin Solid Films, 2017, 636, 54-62.	1.8	22
42	Biomineralisation with Saos-2 bone cells on TiSiN sputtered Ti alloys. Colloids and Surfaces B: Biointerfaces, 2017, 155, 1-10.	5.0	6
43	Trimming the electrical properties on nanoscale YBa 2 Cu 3 O 7 â^' x constrictions by focus ion beam technique. Physica C: Superconductivity and Its Applications, 2017, 540, 38-43.	1.2	6
44	3.8 Biomedical Thin Films: Mechanical Properties â~†. , 2017, , 128-143.		2
45	AC, DC conduction and dielectric behaviour of solid and liquid phase sintered Al2O3-15mol% V2O5 pellets. Ceramics International, 2017, 43, 3202-3211.	4.8	5
46	Cold atmospheric pressure (CAP) plasma assisted tailoring of LDPE film surfaces for enhancement of adhesive and cytocompatible properties: Influence of operating parameters. Vacuum, 2016, 130, 34-47.	3.5	7
47	Effect of cold atmospheric pressure plasma gas composition on the surface and cyto-compatible properties of low density polyethylene (LDPE) films. Current Applied Physics, 2016, 16, 784-792.	2.4	17
48	Robust, directed assembly of fluorescent nanodiamonds. Nanoscale, 2016, 8, 18032-18037.	5.6	22
49	Corrosion behaviour and adhesion properties of sputtered tantalum coating on Ti6Al4V substrate. Surface and Coatings Technology, 2016, 307, 666-675.	4.8	48
50	Nanostructured TiCrN thin films by Pulsed Magnetron Sputtering for cutting tool applications. Ceramics International, 2016, 42, 9940-9948.	4.8	38
51	Apatite layer growth on glassy Zr 48 Cu 36 Al 8 Ag 8 sputtered titanium for potential biomedical applications. Applied Surface Science, 2016, 369, 501-509.	6.1	8
52	Fabrication of Semiordered Nanopatterned Diamond-like Carbon and Titania Films for Blood Contacting Applications. ACS Applied Materials & Interfaces, 2016, 8, 6802-6810.	8.0	16
53	Mechanical behavior and properties of thin films for biomedical applications. , 2016, , 117-141.		7
54	Quantifying BTEX in aqueous solutions with potentially interfering hydrocarbons using a partially selective sensor array. Analyst, The, 2015, 140, 3233-3238.	3.5	16

#	Article	IF	CITATIONS
55	Synthesis of Al–Si nano-template substrates for surface-enhanced Raman scattering application. Thin Solid Films, 2015, 585, 45-49.	1.8	3
56	Adhesion of hydroxyapatite on titanium medical implants. , 2015, , 21-51.		12
57	SWCNT-aminopolymer composites on mesoporous alumina for fast, room-temperature detection of ultra-low concentrations of NO2 by mediation of water vapour. Sensors and Actuators B: Chemical, 2015, 220, 1105-1111.	7.8	2
58	Minimizing Fouling at Hydrogenated Conical-Tip Carbon Electrodes during Dopamine Detection in Vivo. Analytical Chemistry, 2014, 86, 2443-2450.	6.5	37
59	Anti-bacterial property of Si and F doped diamond-like carbon coatings. Surface and Coatings Technology, 2013, 226, 1-6.	4.8	27
60	Mesoporous surfaces by phase separation of Al–Si thin films. Thin Solid Films, 2013, 528, 175-179.	1.8	3
61	Mechanical properties of inorganic biomedical thin films and their corresponding testing methods. Surface and Coatings Technology, 2013, 233, 39-48.	4.8	36
62	High reflectance ta-C coatings in the extreme ultraviolet. Optics Express, 2013, 21, 27537.	3.4	37
63	Physisorption-induced electron scattering on the surface of carbon-metal core-shell nanowire arrays for hydrogen sensing. Applied Physics Letters, 2013, 102, .	3.3	5
64	Influence of Gold Nanoparticle Film Porosity on the Chemiresistive Sensing Performance. Electroanalysis, 2013, 25, 2313-2320.	2.9	4
65	Spatial dispersion in three-dimensional drawn magnetic metamaterials. Optics Express, 2012, 20, 11924.	3.4	14
66	Spatial dispersion management in three-dimensional drawn magnetic metamaterials. , 2012, , .		0
67	Biomimetic apatite growth from simulated body fluid on various oxide containing DLC thin films. Diamond and Related Materials, 2012, 21, 42-49.	3.9	12
68	Detection of hydrogen using multi-walled carbon-nanotube yarns coated with nanocrystalline Pd and Pd/Pt layered structures. Carbon, 2012, 50, 1786-1792.	10.3	49
69	Fiber metamaterials with negative magnetic permeability in the terahertz. Optical Materials Express, 2011, 1, 115.	3.0	26
70	Mechanical properties and scratch resistance of filtered-arc-deposited titanium oxide thin films on glass. Thin Solid Films, 2011, 519, 7925-7931.	1.8	19
71	A review of high throughput and combinatorial electrochemistry. Electrochimica Acta, 2011, 56, 9679-9699.	5.2	102
72	Ammonia sensing characteristics of carbon-nanotube yarns decorated with nanocrystalline gold. Carbon, 2011, 49, 5265-5270.	10.3	62

#	Article	IF	CITATIONS
73	The atmospheric corrosion of zinc: The effects of salt concentration, droplet size and droplet shape. Electrochimica Acta, 2011, 56, 1866-1873.	5.2	49
74	Biomedical Thin Films: Mechanical Properties. , 2011, , 63-73.		4
75	Drawn Metamaterial Fibers With Negative Permeability. , 2011, , .		1
76	Influence of interaction energy between Siâ€doped diamondâ€like carbon films and bacteria on bacterial adhesion under flow conditions. Journal of Biomedical Materials Research - Part A, 2010, 93A, 133-139.	4.0	12
77	Microstructural investigation of Ti–Si–N hard coatings. Scripta Materialia, 2010, 63, 192-195.	5.2	27
78	Effect of coating thickness on the deformation behaviour of diamond-like carbon–silicon system. Thin Solid Films, 2010, 518, 2021-2028.	1.8	13
79	Properties of zirconium oxide films prepared by filtered cathodic vacuum arc deposition and pulsed DC substrate bias. Thin Solid Films, 2010, 518, 5078-5082.	1.8	26
80	The use of the scratch test to measure the fracture strength of brittle thin films. Thin Solid Films, 2010, 518, 4911-4917.	1.8	25
81	Effect of substrate roughness on the contact damage of thin brittle films on brittle substrates. Thin Solid Films, 2010, 518, 5242-5248.	1.8	6
82	Apatite formation from simulated body fluid on various phases of TiO2 thin films prepared by filtered cathodic vacuum arc deposition. Thin Solid Films, 2010, 519, 1300-1306.	1.8	18
83	Modification of diamond-like carbon coatings with fluorine to reduce biofouling adhesion. Surface and Coatings Technology, 2010, 204, 2454-2458.	4.8	35
84	Thin film composites of nanocrystalline ZrO2 and diamond-like carbon: Synthesis, structural properties and bone cell proliferation. Acta Biomaterialia, 2010, 6, 4154-4160.	8.3	12
85	Composite Yarns of Multiwalled Carbon Nanotubes with Metallic Electrical Conductivity. Small, 2010, 6, 1806-1811.	10.0	130
86	Investigation of Biomimetic Apatite Growth on DLC-ZrO ₂ Thin Films Prepared by MOCVD. Materials Science Forum, 2010, 654-656, 2204-2207.	0.3	0
87	Coexistence of epitaxial Ta(111) and Ta(110) oriented magnetron sputtered thin film on c-cut sapphire. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2010, 28, 175-181.	2.1	10
88	Substrate effects on the mechanical properties and contact damage of diamond-like carbon thin films. Diamond and Related Materials, 2010, 19, 1273-1280.	3.9	23
89	Thin-film nanocomposites of diamond-like carbon and titanium oxide; Osteoblast adhesion and surface properties. Diamond and Related Materials, 2010, 19, 329-335.	3.9	30
90	Correlation of nanoindentation-induced deformation microstructures in diamondlike carbon coatings on silicon substrates with simulation studies. Journal of Materials Research, 2010, 25, 910-920.	2.6	2

#	Article	IF	CITATIONS
91	Epitaxial-like Growth of Anisotropic Mesostructure on an Anisotropic Surface of an Oblique Nanocolumnar Structure. Journal of the American Chemical Society, 2010, 132, 9414-9419.	13.7	16
92	Multilayered coatings: Tuneable protection for metals. Corrosion Science, 2010, 52, 3847-3850.	6.6	7
93	Nanoindentation-induced deformation behaviour of tetrahedral amorphous carbon coating deposited by filtered cathodic vacuum arc. Diamond and Related Materials, 2010, 19, 1423-1430.	3.9	5
94	The properties of fluorine-containing diamond-like carbon films prepared by pulsed DC plasma-activated chemical vapour deposition. Diamond and Related Materials, 2010, 19, 1466-1471.	3.9	55
95	Contact damage of tetrahedral amorphous carbon thin films on silicon substrates. Journal of Materials Research, 2009, 24, 3286-3293.	2.6	2
96	Reverse size effect in the fracture strength of brittle thin films. Scripta Materialia, 2009, 60, 937-940.	5.2	14
97	Incorporation of Si and SiOx into diamond-like carbon films: Impact on surface properties and osteoblast adhesion. Acta Biomaterialia, 2009, 5, 1791-1797.	8.3	50
98	Phase separated AlSi thin films prepared by filtered cathodic arc deposition. Thin Solid Films, 2009, 517, 1567-1571.	1.8	7
99	Molecular structure of SiOx-incorporated diamond-like carbon films; evidence for phase segregation. Diamond and Related Materials, 2009, 18, 1167-1173.	3.9	35
100	Amorphous carbonated apatite formation on diamond-like carbon containing titanium oxide. Diamond and Related Materials, 2009, 18, 1139-1144.	3.9	33
101	The properties of fluorine containing diamond-like carbon films prepared by plasma-enhanced chemical vapour deposition. Diamond and Related Materials, 2009, 18, 66-71.	3.9	75
102	Structural, optical and electrical properties of undoped polycrystalline hematite thin films produced using filtered arc deposition. Thin Solid Films, 2008, 516, 1716-1724.	1.8	179
103	The effect of pulsed direct current substrate bias on the properties of titanium dioxide thin films deposited by filtered cathodic vacuum arc deposition. Thin Solid Films, 2008, 517, 494-499.	1.8	40
104	Silicaâ€overcoated substrates for detection of proteins by surfaceâ€enhanced Raman spectroscopy. Journal of Raman Spectroscopy, 2008, 39, 673-678.	2.5	21
105	Deformation mechanisms of TiN multilayer coatings alternated by ductile or stiff interlayers. Acta Materialia, 2008, 56, 852-861.	7.9	83
106	A simple nanoindentation-based methodology to assess the strength of brittle thin films. Acta Materialia, 2008, 56, 1633-1641.	7.9	22
107	Effect of substrate roughness on the contact damage of DLC coatings. Diamond and Related Materials, 2008, 17, 975-979.	3.9	31
108	Contact damage evolution in diamondlike carbon coatings on ductile substrates. Journal of Materials Research, 2008, 23, 27-36.	2.6	33

AVI BENDAVID

#	Article	IF	CITATIONS
109	Berkovich indentation of diamondlike carbon coatings on silicon substrates. Journal of Materials Research, 2008, 23, 1862-1869.	2.6	16
110	Alignment and switching behaviors of liquid crystal on a-SiOx thin films deposited by a filtered cathodic arc process. Applied Physics Letters, 2007, 91, 063516.	3.3	19
111	Microstructural response of TiN monolithic and multilayer coatings during microscratch testing. Journal of Materials Research, 2007, 22, 2312-2318.	2.6	41
112	Strength Measurement in Brittle Thin Films. Materials Research Society Symposia Proceedings, 2007, 1049, 1.	0.1	0
113	Photoelectrochemical and Structural Properties of TiO2and N-Doped TiO2Thin Films Synthesized Using Pulsed Direct Current Plasma-Activated Chemical Vapor Deposition. Journal of Physical Chemistry C, 2007, 111, 18334-18340.	3.1	90
114	The mechanical and biocompatibility properties of DLC-Si films prepared by pulsed DC plasma activated chemical vapor deposition. Diamond and Related Materials, 2007, 16, 1616-1622.	3.9	126
115	Contact damage evolution in a diamond-like carbon (DLC) coating on a stainless steel substrate. Thin Solid Films, 2007, 515, 3196-3201.	1.8	77
116	DLC coatings: Effects of physical and chemical properties on biological response. Biomaterials, 2007, 28, 1620-1628.	11.4	152
117	The influence of surface chemistry and topography on the contact guidance of MG63 osteoblast cells. Journal of Materials Science: Materials in Medicine, 2007, 18, 705-714.	3.6	92
118	Deformation behaviour of DLC coatings on (111) silicon substrates. Thin Solid Films, 2007, 516, 267-271.	1.8	18
119	The biocompatibility of diamond-like carbon nano films. , 2006, , .		5
120	Zr–Si–N films fabricated using hybrid cathodic arc and chemical vapour deposition: Structure vs. properties. Surface and Coatings Technology, 2006, 200, 4213-4219.	4.8	39
121	Deposition of nanocomposite thin films by a hybrid cathodic arc and chemical vapour technique. Surface and Coatings Technology, 2006, 201, 4139-4144.	4.8	26
122	Nanoindentation-induced deformation behaviour of diamond-like carbon coatings on silicon substrates. Thin Solid Films, 2006, 515, 1000-1004.	1.8	21
123	Optimizing charge transport in Fe 2 O 3 films deposited on nanowire arrays. , 2006, 6340, 197.		2
124	Three-dimensional study of indentation-induced cracks in an amorphous carbon coating on a steel substrate. Journal of Materials Research, 2006, 21, 2600-2605.	2.6	14
125	Deformation and fracture of Ti–Si–N nanocomposite films. Thin Solid Films, 2005, 479, 193-200.	1.8	35

Nanocomposite Tiâ€"Siâ€"N, Zrâ€"Siâ€"N, Tiâ€"Alâ€"Siâ€"N, Tiâ€"Alâ€"Vâ€"Siâ€"N thin film coatings deposited by yacuum arc deposition. Surface and Coatings Technology, 2005, 200, 2228-2235.

#	Article	IF	CITATIONS
127	Adherent apatite coating on titanium substrate using chemical deposition. Journal of Biomedical Materials Research - Part A, 2005, 72A, 428-438.	4.0	57
128	Deposition of nanocomposite TiN-Si3N4 thin films by hybrid cathodic arc and chemical vapor process. Applied Physics A: Materials Science and Processing, 2005, 81, 151-158.	2.3	28
129	Characterization of MgO substrates for growth of epitaxial YBCO thin films. Superconductor Science and Technology, 2005, 18, 1035-1041.	3.5	34
130	Influence of MgO surface conditions on the in-plane crystal orientation and critical current density of epitaxial YBCO films. Physica C: Superconductivity and Its Applications, 2004, 400, 143-152.	1.2	37
131	Properties of Ti1Si N films deposited by concurrent cathodic arc evaporation and magnetron sputtering. Surface and Coatings Technology, 2003, 163-164, 245-250.	4.8	67
132	The deposition of NbN and NbC thin films by filtered vacuum cathodic arc deposition. Surface and Coatings Technology, 2003, 163-164, 347-352.	4.8	81
133	The properties of nanocomposite aluminium–silicon based thin films deposited by filtered arc deposition. Thin Solid Films, 2002, 420-421, 83-88.	1.8	16
134	Solution- and Solid-Phase Synthesis of Components for Tethered Bilayer Membranes. Journal of Organic Chemistry, 2001, 66, 3709-3716.	3.2	23
135	The filtered arc process and materials deposition. Surface and Coatings Technology, 2001, 142-144, 7-10.	4.8	29
136	Effect of substrate bias on AlN thin film preparation in shielded reactive vacuum arc deposition. Thin Solid Films, 2001, 386, 276-280.	1.8	47
137	Review of the filtered vacuum arc process and materials deposition. Thin Solid Films, 2001, 394, 1-14.	1.8	240
138	Deposition and modification of titanium dioxide thin films by filtered arc deposition. Thin Solid Films, 2000, 360, 241-249.	1.8	199
139	TiNx films with metallic behavior at high N/Ti ratios for better solar control windows. Applied Physics Letters, 1999, 75, 630-632.	3.3	46
140	Properties of titanium oxide film prepared by reactive cathodic vacuum arc deposition. Thin Solid Films, 1999, 348, 145-151.	1.8	124
141	Morphology and optical properties of gold thin films prepared by filtered arc deposition. Thin Solid Films, 1999, 354, 169-175.	1.8	37
142	Plasma deposition of tribological and optical thin film materials with a filtered cathodic arc source. Surface and Coatings Technology, 1999, 112, 257-260.	4.8	29
143	Structural and optical properties of titanium oxide thin films deposited by filtered arc deposition. Thin Solid Films, 1999, 355-356, 6-11.	1.8	141
144	Ionized plasma vapor deposition and filtered arc deposition; processes, properties and applications. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1999, 17, 2351-2359.	2.1	34

#	Article	IF	CITATIONS
145	Hydrogen Elastic Recoil Detection Depth Resolution and Sensitivity as a Function of Sample Composition. Materials Science Forum, 1997, 248-249, 369-372.	0.3	2
146	The deposition of TiN thin films by filtered cathodic arc techniques. IEEE Transactions on Plasma Science, 1997, 25, 675-679.	1.3	41
147	Preferential sputtering effects in the deposition of TiAl films by filtered cathodic arc deposition. Nuclear Instruments & Methods in Physics Research B, 1997, 129, 207-209.	1.4	7
148	Control of film properties during filtered arc deposition. Surface and Coatings Technology, 1996, 81, 36-41.	4.8	20
149	The mechanical and structural properties of Ti films prepared by filtered arc deposition. Vacuum, 1996, 47, 1179-1188.	3.5	24
150	Characterization of the Optical Properties and Composition of TiNxThin Films by Spectroscopic Ellipsometry and X-ray Photoelectron Spectroscopy. Surface and Interface Analysis, 1996, 24, 627-633.	1.8	41
151	The deposition of TiN thin films by nitrogen ion assisted deposition of Ti from a filtered cathodic arc source. Surface and Coatings Technology, 1996, 86-87, 271-278.	4.8	24
152	High energy xenon ion beam assisted deposition of TiN film and its industrial application. Journal of Materials Science, 1996, 31, 363-369.	3.7	7
153	Atomic force microscopy study on topography of films produced by ionâ€based techniques. Journal of Applied Physics, 1996, 80, 2658-2664.	2.5	17
154	Influence of thickness and substrate on the hardness and deformation of TiN films. Thin Solid Films, 1995, 270, 283-288.	1.8	56
155	Deposition and modification of titanium nitride by ion assisted arc deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1995, 13, 1658-1664.	2.1	64
156	The properties of TiN films deposited by filtered arc evaporation. Surface and Coatings Technology, 1994, 70, 97-106.	4.8	88
157	Properties of thin films of tantalum oxide deposited by ion-assisted deposition. Thin Solid Films, 1994, 239, 181-185.	1.8	30
158	Deposition of thin films by ion-assisted processes. , 1994, 2364, 464.		0
159	The deposition of niobium, NbN and Nb2O5 films by filtered arc evaporation. Journal of Materials Science Letters, 1993, 12, 322-323.	0.5	15
160	Mechanical and Optical Properties of The Films of Tantalum Oxide Deposited by Ion-Assisted Deposition. Materials Research Society Symposia Proceedings, 1993, 308, 583.	0.1	14
161	Optical properties and stress of ion-assisted aluminum nitride thin films. Applied Optics, 1992, 31, 6734.	2.1	49
162	The deposition of thin films by filtered arc evaporation. Surface and Coatings Technology, 1992, 54-55, 136-142.	4.8	42

#	Article	IF	CITATIONS
163	A Miniature DC-SQUID Magnetometer with Current Injection Feedback. Springer Proceedings in Physics, 1992, , 562-566.	0.2	0
164	The deposition of TiN thin films by energetic condensation from a filtered cathodic arc process. , 0, , .		3
165	Elastic properties of hardness coatings using surface acoustic wave spectroscopy. , 0, , .		1