
Nana Voytenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3568713/publications.pdf Version: 2024-02-01

NANA VOYTENKO

#	Article	IF	CITATIONS
1	Persistent Inflammation Induces GluR2 Internalization via NMDA Receptor-Triggered PKC Activation in Dorsal Horn Neurons. Journal of Neuroscience, 2009, 29, 3206-3219.	3.6	151
2	ATP-induced cytoplasmic calcium mobilization in Bergmann glial cells. Journal of Neuroscience, 1995, 15, 7861-7871.	3.6	145
3	Activation of P2-purino-,î±1-adreno and H1-histamine receptors triggers cytoplasmic calcium signalling in cerebellar purkinje neurons. Neuroscience, 1996, 73, 643-647.	2.3	65
4	Diabetes-induced abnormalities in ER calcium mobilization in primary and secondary nociceptive neurons. Pflugers Archiv European Journal of Physiology, 2004, 448, 395-401.	2.8	63
5	Diabetes-induced changes in calcium homeostasis and the effects of calcium channel blockers in rat and mice nociceptive neurons. Diabetologia, 2001, 44, 1302-1309.	6.3	60
6	Inflammation alters trafficking of extrasynaptic AMPA receptors in tonically firing lamina II neurons of the rat spinal dorsal horn. Pain, 2011, 152, 912-923.	4.2	59
7	Specific functioning of Cav3.2 T-type calcium and TRPV1 channels under different types of STZ-diabetic neuropathy. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 636-649.	3.8	56
8	Novel peptide from spider venom inhibits P2X3 receptors and inflammatory pain. Annals of Neurology, 2010, 67, 680-683.	5.3	55
9	Effect of streptozotocin-induced diabetes on the activity of calcium channels in rat dorsal horn neurons. Neuroscience, 1999, 95, 519-524.	2.3	42
10	Changes in calcium signalling in dorsal horn neurons in rats with streptozotocin-induced diabetes. Neuroscience, 1999, 94, 887-890.	2.3	37
11	Calcium signalling in granule neurones studied in cerebellar slices. Cell Calcium, 1996, 19, 59-71.	2.4	36
12	Role of mitochondria in intracellular calcium signaling in primary and secondary sensory neurones of rats. Cell Calcium, 2002, 32, 121-130.	2.4	36
13	Iono- and metabotropically induced purinergic calcium signalling in rat neocortical neurons. Brain Research, 1998, 799, 285-291.	2.2	34
14	Functional coupling between ryanodine receptors, mitochondria and Ca2+ ATPases in rat submandibular acinar cells. Cell Calcium, 2008, 43, 469-481.	2.4	33
15	Changes in functioning of rat submandibular salivary gland under streptozotocin-induced diabetes are associated with alterations of Ca2+ signaling and Ca2+ transporting pumps. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2006, 1762, 294-303.	3.8	32
16	Upregulation of T-Type Ca ²⁺ Channels in Long-Term Diabetes Determines Increased Excitability of a Specific Type of Capsaicin-Insensitive DRG Neurons. Molecular Pain, 2015, 11, s12990-015-0028.	2.1	31
17	Inflammatory-induced changes in synaptic drive and postsynaptic AMPARs in lamina II dorsal horn neurons are cell-type specific. Pain, 2015, 156, 428-438.	4.2	30
18	PKCα Is Required for Inflammation-Induced Trafficking of Extrasynaptic AMPA Receptors in Tonically Firing Lamina II Dorsal Horn Neurons During the Maintenance of Persistent Inflammatory Pain. Journal of Pain, 2013, 14, 182-192.	1.4	28

Νανα *V*ουτενκο

#	Article	IF	CITATIONS
19	Peripheral inflammation-induced increase of AMPA-mediated currents and Ca2+ transients in the presence of cyclothiazide in the rat substantia gelatinosa neurons. Cell Calcium, 2004, 35, 461-469.	2.4	26
20	Age-associated changes of cytoplasmic calcium homeostasis in cerebellar granule neurons in situ: Investigation on thin cerebellar slices. Experimental Gerontology, 1996, 31, 475-487.	2.8	25
21	Development of inflammation-induced hyperalgesia and allodynia is associated with the upregulation of extrasynaptic AMPA receptors in tonically firing lamina II dorsal horn neurons. Frontiers in Physiology, 2012, 3, 391.	2.8	24
22	Changes in mitochondrial Ca2+homeostasis in primary sensory neurons of diabetic mice. NeuroReport, 1998, 9, 1121-1125.	1.2	23
23	The Effect of Nimodipine on Calcium Homeostasis and Pain Sensitivity in Diabetic Rats. Cellular and Molecular Neurobiology, 2006, 26, 1539-1555.	3.3	20
24	Cannabinoid receptors in submandibular acinar cells: functional coupling between saliva fluid and electrolytes secretion and Ca2+ signalling. Journal of Cell Science, 2012, 125, 1884-95.	2.0	19
25	Nano-engineered microcapsules boost the treatment of persistent pain. Drug Delivery, 2018, 25, 435-447.	5.7	18
26	Extrasynaptic AMPA receptors in the dorsal horn: Evidence and functional significance. Brain Research Bulletin, 2013, 93, 47-56.	3.0	17
27	Inhibition of Spinal Ca2+-Permeable AMPA Receptors with Dicationic Compounds Alleviates Persistent Inflammatory Pain without Adverse Effects. Frontiers in Cellular Neuroscience, 2016, 10, 50.	3.7	17
28	Opposite, bidirectional shifts in excitation and inhibition in specific types of dorsal horn interneurons are associated with spasticity and pain post-SCI. Scientific Reports, 2017, 7, 5884.	3.3	15
29	Maturation of neural stem cells and integration into hippocampal circuits: functional study in post-ischemia <i>in situ</i> . Journal of Cell Science, 2018, 131, .	2.0	15
30	Non-opioid tolerance in juvenile and adult rats. European Journal of Pharmacology, 2010, 629, 68-72.	3.5	14
31	HIF-1α-mediated upregulation of SERCA2b: The endogenous mechanism for alleviating the ischemia-induced intracellular Ca2+ store dysfunction in CA1 and CA3 hippocampal neurons. Cell Calcium, 2016, 59, 251-261.	2.4	14
32	Mitochondria adjust Ca2+ signaling regime to a pattern of stimulation in salivary acinar cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 1740-1748.	4.1	13
33	Functional Characterization of Lamina X Neurons in ex-Vivo Spinal Cord Preparation. Frontiers in Cellular Neuroscience, 2017, 11, 342.	3.7	13
34	Spinal AMPA receptors: Amenable players in central sensitization for chronic pain therapy?. Channels, 2021, 15, 284-297.	2.8	13
35	Altered long-term synaptic plasticity and kainate-induced Ca2+ transients in the substantia gelatinosa neurons in GLUK6-deficient mice. Molecular Brain Research, 2005, 142, 9-18.	2.3	12
36	Stable, synthetic analogs of diadenosine tetraphosphate inhibit rat and human P2X3 receptors and inflammatory pain. Molecular Pain, 2016, 12, 174480691663770.	2.1	11

Νανα νουτενκο

#	Article	IF	CITATIONS
37	Spinal PKCα inhibition and gene-silencing for pain relief: AMPAR trafficking at the synapses between primary afferents and sensory interneurons. Scientific Reports, 2018, 8, 10285.	3.3	11
38	High-threshold primary afferent supply of spinal lamina X neurons. Pain, 2019, 160, 1982-1988.	4.2	10
39	Distinct mechanisms of signal processing by lamina I spino-parabrachial neurons. Scientific Reports, 2019, 9, 19231.	3.3	10
40	Title is missing!. Neurophysiology, 2001, 33, 266-276.	0.3	8
41	Title is missing!. Neurophysiology, 2002, 34, 5-12.	0.3	8
42	Optimized Model of Cerebral Ischemia In situ for the Long-Lasting Assessment of Hippocampal Cell Death. Frontiers in Neuroscience, 2017, 11, 388.	2.8	8
43	Alkalinization-Induced Changes in Intracellular Calcium in Rat Spinal Cord Neurons. Neurochemical Research, 2004, 29, 1659-1665.	3.3	7
44	Nociceptive Neurons Differentially Express Fast and Slow T-Type Ca ²⁺ Currents in Different Types of Diabetic Neuropathy. Neural Plasticity, 2014, 2014, 1-12.	2.2	7
45	Role of Ca2+,Mg2+-ATPases in Diabetes-Induced Alterations in Calcium Homeostasis in Input Neurons of the Nociceptive System. Neurophysiology, 2004, 36, 169-173.	0.3	4
46	Atlanto-occipital catheterization of young rats for long-term drug delivery into the lumbar subarachnoid space combined with in vivo testing and electrophysiology in situ. Journal of Neuroscience Methods, 2017, 290, 125-132.	2.5	4
47	Segmental and descending control of primary afferent input to the spinal lamina X. Pain, 2022, 163, 2014-2020.	4.2	4
48	The endoplasmic reticulum and mitochondria as elements of the mechanism of intracellular signaling in the nerve cell. Neuroscience and Behavioral Physiology, 2000, 30, 15-18.	0.4	3
49	Spontaneous Synaptic Activity in Projection Neurons of Lamina I of the Isolated Rat Lumbar Spinal Cord: Effect of Peripheral Inflammation. Neurophysiology, 2017, 49, 301-304.	0.3	3
50	Model of spinal cord lateral hemi-excision at the lower thoracic level for the tasks of reconstructive and experimental neurosurgery. Ukrainian Neurosurgical Journal, 2021, 27, 33-53.	0.2	3
51	Metabotropic purinoreceptors in rat dorsal horn neurones: predominant dendritic location. NeuroReport, 2001, 12, 3503-3507.	1.2	2
52	Intracellular calcium homeostasis changes induced in rat spinal cord neurons by extracellular acidification. Neurochemical Research, 2003, 28, 1543-1547.	3.3	2
53	Calcium signaling in diabetic neuropathy. Neurophysiology, 2004, 36, 310-314.	0.3	2
54	Role of Calcium Signalling in the Development of Pain Syndromes. Neurophysiology, 2005, 37, 166-171.	0.3	2

NANA VOYTENKO

#	Article	IF	CITATIONS
55	Phenotypes of Motor Deficit and Pain after Experimental Spinal Cord Injury. Bioengineering, 2022, 9, 262.	3.5	2
56	Processes Maintaining Calcium Homeostasis in Acinar Cells of the Rat Submandibular Salivary Gland. Neurophysiology, 2001, 33, 216-223.	0.3	1
57	Metabotropic Purinoreceptors in Rat Dorsal Horn Neurons: Predominantly Dendritic Location. Neurophysiology, 2002, 34, 165-167.	0.3	1
58	Dynamics of calcium release and uptake by the internal calcium stores in rat sensory neurons. Neurophysiology, 2006, 38, 305-307.	0.3	1
59	Structural/Functional Characteristics of Organotypic Spinal Cord Slices under Conditions of Long-Lasting Culturing. Neurophysiology, 2017, 49, 162-164.	0.3	1
60	Role of T-Type Ca2+ Channels in Painful Diabetic Neuropathy. Neurophysiology, 2019, 51, 455-461.	0.3	1
61	The Efficacy of Immediate Implantation of Macroporous Poly(N-[2-Hydroxypropyl]-Methacrylamide) Hydrogel after Laceration Spinal Cord Injury in Young Rats. International Journal of Morphology, 2021, 39, 1749-1757.	0.2	1
	DEPENDENCE OF THE RESTORATIVE EFFECT OF MACROPOROUS		

62

#	Article	IF	CITATIONS
73	Correction: Model of excision of the lateral half of the spinal cord at the lower thoracic level for the needs of reconstructive neurosurgery and neurotransplantation. Ukrainian Neurosurgical Journal, 2022, 28, 48.	0.2	0