
## Ricardo Ramirez-Gonzalez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/356857/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Pathogen-induced biosynthetic pathways encode defense-related molecules in bread wheat.<br>Proceedings of the National Academy of Sciences of the United States of America, 2022, 119,<br>e2123299119.                                                | 7.1  | 30        |
| 2  | New insights into homoeologous copy number variations in the hexaploid wheat genome. Plant Genome, 2021, 14, e20069.                                                                                                                                  | 2.8  | 16        |
| 3  | Rust expression browser: an open source database for simultaneous analysis of host and pathogen gene expression profiles with expVIP. BMC Genomics, 2021, 22, 166.                                                                                    | 2.8  | 10        |
| 4  | Kinematic of the Position and Orientation Synchronization of the Posture of a n DoF Upper-Limb<br>Exoskeleton with a Virtual Object in an Immersive Virtual Reality Environment. Electronics<br>(Switzerland), 2021, 10, 1069.                        | 3.1  | 8         |
| 5  | Wheat in vivo RNA structure landscape reveals a prevalent role of RNA structure in modulating translational subgenome expression asymmetry. Genome Biology, 2021, 22, 326.                                                                            | 8.8  | 12        |
| 6  | A carbohydrate-binding protein, B-GRANULE CONTENT 1, influences starch granule size distribution in a dose-dependent manner in polyploid wheat. Journal of Experimental Botany, 2020, 71, 105-115.                                                    | 4.8  | 36        |
| 7  | Multiple wheat genomes reveal global variation in modern breeding. Nature, 2020, 588, 277-283.                                                                                                                                                        | 27.8 | 513       |
| 8  | A haplotype-led approach to increase the precision of wheat breeding. Communications Biology, 2020, 3, 712.                                                                                                                                           | 4.4  | 68        |
| 9  | The NLR-Annotator Tool Enables Annotation of the Intracellular Immune Receptor Repertoire. Plant Physiology, 2020, 183, 468-482.                                                                                                                      | 4.8  | 147       |
| 10 | Enabling reusability of plant phenomic datasets with MIAPPE 1.1. New Phytologist, 2020, 227, 260-273.                                                                                                                                                 | 7.3  | 84        |
| 11 | Optimizing <i>Rhizobium-</i> legume symbioses by simultaneous measurement of rhizobial competitiveness and N <sub>2</sub> fixation in nodules. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9822-9831. | 7.1  | 63        |
| 12 | A roadmap for gene functional characterisation in crops with large genomes: Lessons from polyploid wheat. ELife, 2020, 9, .                                                                                                                           | 6.0  | 78        |
| 13 | BrAPl—an application programming interface for plant breeding applications. Bioinformatics, 2019, 35, 4147-4155.                                                                                                                                      | 4.1  | 82        |
| 14 | A Co-Expression Network in Hexaploid Wheat Reveals Mostly Balanced Expression and Lack of<br>Significant Gene Loss of Homeologous Meiotic Genes Upon Polyploidization. Frontiers in Plant<br>Science, 2019, 10, 1325.                                 | 3.6  | 24        |
| 15 | Global transcriptome analysis uncovers the gene co-expression regulation network and key genes<br>involved in grain development of wheat (Triticum aestivum L.). Functional and Integrative Genomics,<br>2019, 19, 853-866.                           | 3.5  | 14        |
| 16 | RNA-seq, de novo transcriptome assembly and flavonoid gene analysis in 13 wild and cultivated berry fruit species with high content of phenolics. BMC Genomics, 2019, 20, 995.                                                                        | 2.8  | 27        |
| 17 | Hotspots in the genomic architecture of field drought responses in wheat as breeding targets.<br>Functional and Integrative Genomics, 2019, 19, 295-309.                                                                                              | 3.5  | 40        |
| 18 | Speed breeding in growth chambers and glasshouses for crop breeding and model plant research.<br>Nature Protocols, 2018, 13, 2944-2963.                                                                                                               | 12.0 | 286       |

| #  | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Genome-Wide Transcription During Early Wheat Meiosis Is Independent of Synapsis, Ploidy Level, and<br>the Ph1 Locus. Frontiers in Plant Science, 2018, 9, 1791.                                                         | 3.6  | 44        |
| 20 | The transcriptional landscape of polyploid wheat. Science, 2018, 361, .                                                                                                                                                 | 12.6 | 768       |
| 21 | Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 2018, 361, .                                                                                                      | 12.6 | 2,424     |
| 22 | Impact of transposable elements on genome structure and evolution in bread wheat. Genome Biology, 2018, 19, 103.                                                                                                        | 8.8  | 226       |
| 23 | Uncovering hidden variation in polyploid wheat. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E913-E921.                                                                  | 7.1  | 554       |
| 24 | An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations. Genome Research, 2017, 27, 885-896. | 5.5  | 464       |
| 25 | Genome sequence and genetic diversity of European ash trees. Nature, 2017, 541, 212-216.                                                                                                                                | 27.8 | 166       |
| 26 | transPLANT Resources for Triticeae Genomic Data. Plant Genome, 2016, 9, plantgenome2015.06.0038.                                                                                                                        | 2.8  | 8         |
| 27 | expVIP: a Customizable RNA-seq Data Analysis and Visualization Platform. Plant Physiology, 2016, 170, 2172-2186.                                                                                                        | 4.8  | 403       |
| 28 | Host Subtraction, Filtering and Assembly Validations for Novel Viral Discovery Using Next Generation<br>Sequencing Data. PLoS ONE, 2015, 10, e0129059.                                                                  | 2.5  | 44        |
| 29 | Mutation Scanning in Wheat by Exon Capture and Next-Generation Sequencing. PLoS ONE, 2015, 10, e0137549.                                                                                                                | 2.5  | 65        |
| 30 | PolyMarker: A fast polyploid primer design pipeline. Bioinformatics, 2015, 31, 2038-2039.                                                                                                                               | 4.1  | 202       |
| 31 | Field pathogenomics reveals the emergence of a diverse wheat yellow rust population. Genome<br>Biology, 2015, 16, 23.                                                                                                   | 8.8  | 185       |
| 32 | bio-samtools 2: a package for analysis and visualization of sequence and alignment data with<br>SAMtools in Ruby. Bioinformatics, 2015, 31, 2565-2567.                                                                  | 4.1  | 61        |
| 33 | Mapping a Type 1 FHB resistance on chromosome 4AS of Triticum macha and deployment in combination with two Type 2 resistances. Theoretical and Applied Genetics, 2015, 128, 1725-1738.                                  | 3.6  | 10        |
| 34 | <scp>RNA</scp> â€ <scp>S</scp> eq bulked segregant analysis enables the identification of<br>highâ€resolution genetic markers for breeding in hexaploid wheat. Plant Biotechnology Journal, 2015,<br>13, 613-624.       | 8.3  | 202       |
| 35 | Next Generation Sequencing Enabled Genetics in Hexaploid Wheat. , 2015, , 201-209.                                                                                                                                      |      | 0         |
| 36 | A chromosome-based draft sequence of the hexaploid bread wheat ( <i>Triticum aestivum</i> ) genome.<br>Science, 2014, 345, 1251788.                                                                                     | 12.6 | 1,479     |

| #  | Article                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Genome interplay in the grain transcriptome of hexaploid bread wheat. Science, 2014, 345, 1250091.                                                                            | 12.6 | 318       |
| 38 | Ancient hybridizations among the ancestral genomes of bread wheat. Science, 2014, 345, 1250092.                                                                               | 12.6 | 629       |
| 39 | Sequencing quality assessment tools to enable data-driven informatics for high throughput genomics. Frontiers in Genetics, 2013, 4, 288.                                      | 2.3  | 163       |
| 40 | StatsDB: platform-agnostic storage and understanding of next generation sequencing run metrics.<br>F1000Research, 2013, 2, 248.                                               | 1.6  | 14        |
| 41 | StatsDB: platform-agnostic storage and understanding of next generation sequencing run metrics.<br>F1000Research, 2013, 2, 248.                                               | 1.6  | 12        |
| 42 | PyroClean: Denoising Pyrosequences from Protein-Coding Amplicons for the Recovery of Interspecific and Intraspecific Genetic Variation. PLoS ONE, 2013, 8, e57615.            | 2.5  | 19        |
| 43 | Identifying and Classifying Trait Linked Polymorphisms in Non-Reference Species by Walking Coloured de Bruijn Graphs. PLoS ONE, 2013, 8, e60058.                              | 2.5  | 26        |
| 44 | Biogem: an effective tool-based approach for scaling up open source software development in bioinformatics. Bioinformatics, 2012, 28, 1035-1037.                              | 4.1  | 27        |
| 45 | Evolution of an Eurasian Avian-like Influenza Virus in NaÃ⁻ve and Vaccinated Pigs. PLoS Pathogens, 2012,<br>8, e1002730.                                                      | 4.7  | 79        |
| 46 | Analyses of pig genomes provide insight into porcine demography and evolution. Nature, 2012, 491, 393-398.                                                                    | 27.8 | 1,190     |
| 47 | Bio-samtools: Ruby bindings for SAMtools, a library for accessing BAM files containing high-throughput sequence alignments. Source Code for Biology and Medicine, 2012, 7, 6. | 1.7  | 65        |
| 48 | Assemblathon 1: A competitive assessment of de novo short read assembly methods. Genome Research, 2011, 21, 2224-2241.                                                        | 5.5  | 443       |
| 49 | Gee Fu: a sequence version and web-services database tool for genomic assembly, genome feature and NGS data. Bioinformatics, 2011, 27, 2754-2755.                             | 4.1  | 2         |