
Wen-Hui Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3568378/publications.pdf Version: 2024-02-01

WEN-HULWANC

#	Article	IF	CITATIONS
1	Removal of gaseous volatile organic compounds via vacuum ultraviolet photodegradation: Review and prospect. Journal of Environmental Sciences, 2023, 125, 427-442.	6.1	16
2	Stabilizing sodium metal anode through facile construction of organic-metal interface. Journal of Energy Chemistry, 2022, 66, 133-139.	12.9	24
3	Chloride-mediated electrochemical degradation of the venlafaxine antidepressant. Environmental Technology and Innovation, 2022, 25, 102189.	6.1	4
4	Rational design of Sn4P3/Ti3C2Tx composite anode with enhanced performance for potassium-ion battery. Rare Metals, 2022, 41, 2259-2267.	7.1	23
5	Deep learning model based on urban multi-source data for predicting heavy metals (Cu, Zn, Ni, Cr) in industrial sewer networks. Journal of Hazardous Materials, 2022, 432, 128732.	12.4	16
6	Piezo-promoted regeneration of Fe2+ boosts peroxydisulfate activation by Bi2Fe4O9 nanosheets. Applied Catalysis B: Environmental, 2022, 310, 121330.	20.2	45
7	Accurate prediction of water quality in urban drainage network with integrated EMD-LSTM model. Journal of Cleaner Production, 2022, 354, 131724.	9.3	66
8	Influence of solvation structure on interphase components for tin phosphide anode in potassium-ion batteries. Cell Reports Physical Science, 2022, 3, 100886.	5.6	2
9	Efficient mineralization of gaseous benzyl chloride by VUV/UV photodegradation in humid air. Environmental Science and Pollution Research, 2021, 28, 27520-27527.	5.3	4
10	Study on the Efficiency of On-Site Sludge Reduction Using Ti/SnO2-Sb and Ti/RuO2-IrO2 Electrodes Based on a Cell Lysis-Cryptic Growth System. Water (Switzerland), 2021, 13, 616.	2.7	0
11	Facile synthesis of hollow Cu3P for sodium-ion batteries anode. Rare Metals, 2021, 40, 3460-3465.	7.1	26
12	Application and prospective of Sn-P based anodes for alkali-ion batteries. Energy Storage Materials, 2021, 40, 292-311.	18.0	19
13	A deep learning algorithm for multi-source data fusion to predict water quality of urban sewer networks. Journal of Cleaner Production, 2021, 318, 128533.	9.3	58
14	Electron-rich CNTs modified FeOCl/Fe2O3 with improved Fenton catalytic performance. Composites Communications, 2021, 27, 100811.	6.3	16
15	Phosphorus-rich tin phosphide-carbon nanotubes composite as a high-performance anode for potassium ion batteries. Composites Communications, 2021, 28, 100938.	6.3	4
16	Data-driven method based on deep learning algorithm for detecting fat, oil, and grease (FOG) of sewer networks in urban commercial areas. Water Research, 2021, 207, 117797.	11.3	26
17	Strategies for Stabilization of Zn Anodes for Aqueous Zn-Based Batteries: A Mini Review. Frontiers in Chemistry, 2021, 9, 822624.	3.6	3
18	Poly(vinylidene difluoride) coating on Cu current collector for high-performance Na metal anode. Energy Storage Materials, 2020, 24, 588-593.	18.0	48

Wen-Hui Wang

#	Article	IF	CITATIONS
19	Towards high-performance lithium metal anodes via the modification of solid electrolyte interphases. Journal of Energy Chemistry, 2020, 45, 7-17.	12.9	74
20	Improving the Fenton catalytic performance of FeOCl using an electron mediator. Journal of Hazardous Materials, 2020, 384, 121494.	12.4	67
21	Enabling high sodium storage performance of micron-sized Sn4P3 anode via diglyme-derived solid electrolyte interphase. Chemical Engineering Journal, 2020, 392, 123810.	12.7	18
22	Synthesis and sodium storage performance of Sb porous nanostructure. Journal of Alloys and Compounds, 2020, 846, 156369.	5.5	8
23	Recent Advances in Desalination Battery: An Initial Review. ACS Applied Materials & Interfaces, 2020, 12, 57671-57685.	8.0	32
24	One-dimensional coaxial cable-like MWCNTs/Sn ₄ P ₃ @C as an anode material with long-term durability for lithium ion batteries. Inorganic Chemistry Frontiers, 2020, 7, 2651-2659.	6.0	25
25	Multiphysical field measurement and fusion for battery electric-thermal-contour performance analysis. Applied Energy, 2020, 262, 114518.	10.1	7
26	Stable Cycling of High-Voltage Lithium-Metal Batteries Enabled by High-Concentration FEC-Based Electrolyte. ACS Applied Materials & Interfaces, 2020, 12, 22901-22909.	8.0	48
27	Three-dimensional carbon felt host for stable sodium metal anode. Carbon, 2019, 155, 50-55.	10.3	25
28	Hybrid Protective Layer for Stable Sodium Metal Anodes at High Utilization. ACS Applied Materials & Interfaces, 2019, 11, 37693-37700.	8.0	51
29	Monodisperse tin nanoparticles and hollow tin oxide nanospheres as anode materials for high performance lithium ion batteries. Inorganic Chemistry Frontiers, 2019, 6, 473-476.	6.0	14
30	Yolk–shell structured SnSe as a high-performance anode for Na-ion batteries. Inorganic Chemistry Frontiers, 2019, 6, 562-565.	6.0	48
31	Lithiophilic Ag Nanoparticle Layer on Cu Current Collector toward Stable Li Metal Anode. ACS Applied Materials & Interfaces, 2019, 11, 8148-8154.	8.0	120
32	Comprehensive Review of P2-Type Na _{2/3} Ni _{1/3} Mn _{2/3} O ₂ , a Potential Cathode for Practical Application of Na-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 22051-22066.	8.0	148
33	Sn ₄ P ₃ /TiC Composites as Liâ€Ion Battery Anode with High Volumetric Capacity and Good Rate Capability. Energy Technology, 2019, 7, 1900371.	3.8	5
34	3D Printing of Hierarchical Graphene Lattice for Advanced Na Metal Anodes. ACS Applied Energy Materials, 2019, 2, 3869-3877.	5.1	40
35	SnP0.94 nanoplates/graphene oxide composite for novel potassium-ion battery anode. Chemical Engineering Journal, 2019, 370, 677-683.	12.7	77
36	Ni ₃ N Nanocrystals Decorated Reduced Graphene Oxide with High Ionic Conductivity for Stable Lithium Metal Anode. ACS Applied Energy Materials, 2019, 2, 2692-2698.	5.1	30

Wen-Hui Wang

#	Article	IF	CITATIONS
37	Submicronâ€sized Sb ₂ O ₃ with hierarchical structure as highâ€performance anodes for Naâ€ion storage. International Journal of Energy Research, 2019, 43, 6561-6565.	4.5	14
38	Effect of particle size on the sodium storage performance of Sn4P3. Journal of Alloys and Compounds, 2019, 771, 204-208.	5.5	12
39	Electrochemical investigation of Sn-Co alloys as anode for Na-ion batteries. Journal of Alloys and Compounds, 2019, 780, 565-569.	5.5	13
40	Thermally reduced graphene paper with fast Li ion diffusion for stable Li metal anode. Electrochimica Acta, 2019, 294, 413-422.	5.2	28
41	Improving cycle stability of SnS anode for sodium-ion batteries by limiting Sn agglomeration. Journal of Power Sources, 2018, 377, 1-6.	7.8	57
42	Synthesis of sword-like CuSbS2 nanowires as an anode material for sodium-ion batteries. Ceramics International, 2018, 44, 13609-13612.	4.8	14
43	Porous SnSbNPs@3D-C Anode with Improved Stability for Sodium-Ion Battery. Journal of the Electrochemical Society, 2018, 165, A1455-A1459.	2.9	13
44	Synthesis of Cu 2 SnS 3 nanosheets as an anode material for sodium ion batteries. Journal of Alloys and Compounds, 2017, 699, 517-520.	5.5	27
45	Phase pure Sn ₄ P ₃ nanotops by solution-liquid-solid growth for anode application in sodium ion batteries. Journal of Materials Chemistry A, 2017, 5, 5791-5796.	10.3	46
46	The selection of input weights of extreme learning machine: A sample structure preserving point of view. Neurocomputing, 2017, 261, 28-36.	5.9	15
47	A closed-loop process for recycling LiNi x Co y Mn (1â՞'xâ՞'y) O 2 from mixed cathode materials of lithium-ion batteries. Green Energy and Environment, 2017, 2, 42-50.	8.7	84
48	Cu4SnP10 as a promising anode material for sodium ion batteries. Nano Energy, 2017, 39, 506-512.	16.0	44
49	Improving the cycling stability of Sn 4 P 3 anode for sodium-ion battery. Journal of Power Sources, 2017, 364, 420-425.	7.8	68
50	Optimized Li and Fe recovery from spent lithium-ion batteries via a solution-precipitation method. RSC Advances, 2016, 6, 43613-43625.	3.6	139
51	A new carbon additive compounded Li3V1.97Zn0.05(PO4)3/C cathode for plug-in hybrid electric vehicles. Electrochimica Acta, 2015, 170, 269-275.	5.2	13
52	Sodium storage capability of spinel Li4Mn5O12. Electrochimica Acta, 2015, 185, 76-82.	5.2	10
53	Effect of Amount of Water Dispersant on Morphological and Electrochemical Properties of Li3V2(PO4)3/C Prepared with Carbothermic Reduction Method. Journal of the Electrochemical Society, 2014, 161, A968-A973.	2.9	4
54	Preliminary Study of Li3V2(PO4)3/C for Aqueous Rechargeable Lithium-Ion Batteries Based on Mild Electrolyte. ECS Electrochemistry Letters, 2014, 3, A105-A107.	1.9	11

#	Article	IF	CITATIONS
55	A compromise of electrochemical performances of Li3V2(PO4)3/C upon cycling within a suitable potential range. Electrochimica Acta, 2014, 116, 490-494.	5.2	13
56	Enhancement of the cycling performance of Li ₃ V ₂ (PO ₄) ₃ /C by stabilizing the crystal structure through Zn ²⁺ doping. Physical Chemistry Chemical Physics, 2014, 16, 13858-13865.	2.8	19
57	A comparative structural and electrochemical study of monoclinic Li3V2(PO4)3/C and rhombohedral Li2.5Na0.5V(2â^2x/3)Nix(PO4)3/C. Electrochimica Acta, 2013, 103, 259-265.	5.2	24
58	P2â€Na 2/3 Ni 2/3 Te 1/3 O 2 cathode for Naâ€ion batteries with high voltage and excellent stability. Energy and Environmental Materials, 0, , .	12.8	3