Gillian S Dite

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3567688/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Birthweight, gestational age and familial confounding in sex differences in infant mortality: a matched co-twin control study of Brazilian male-female twin pairs identified by population data linkage. International Journal of Epidemiology, 2022, 51, 1502-1510.	1.9	8
2	Familial Aspects of Mammographic Density Measures Associated with Breast Cancer Risk. Cancers, 2022, 14, 1483.	3.7	6
3	Early life affects late-life health through determining DNA methylation across the lifespan: A twin study. EBioMedicine, 2022, 77, 103927.	6.1	15
4	Weight is More Informative than Body Mass Index for Predicting Postmenopausal Breast Cancer Risk: Prospective Family Study Cohort (ProF-SC). Cancer Prevention Research, 2022, 15, 185-191.	1.5	4
5	Validation of a clinical and genetic model for predicting severe COVID-19. Epidemiology and Infection, 2022, 150, 1-15.	2.1	0
6	Genetic Aspects of Mammographic Density Measures Associated with Breast Cancer Risk. Cancers, 2022, 14, 2767.	3.7	5
7	Novel mammogramâ€based measures improve breast cancer risk prediction beyond an established mammographic density measure. International Journal of Cancer, 2021, 148, 2193-2202.	5.1	18
8	Comparing 5-Year and Lifetime Risks of Breast CancerÂusing the Prospective Family Study Cohort. Journal of the National Cancer Institute, 2021, 113, 785-791.	6.3	13
9	An integrated clinical and genetic model for predicting risk of severe COVID-19: A population-based case–control study. PLoS ONE, 2021, 16, e0247205.	2.5	26
10	Assessment of a Polygenic Risk Score for Colorectal Cancer to Predict Risk of Lynch Syndrome Colorectal Cancer. JNCI Cancer Spectrum, 2021, 5, pkab022.	2.9	15
11	872Novel approach to estimating sex differences unconfounded by familial factors from studying male-female twin pairs. International Journal of Epidemiology, 2021, 50, .	1.9	1
12	Ability of known colorectal cancer susceptibility SNPs to predict colorectal cancer risk: A cohort study within the UK Biobank. PLoS ONE, 2021, 16, e0251469.	2.5	5
13	Development and validation of a clinical and genetic model for predicting risk of severe COVID-19. Epidemiology and Infection, 2021, 149, e162.	2.1	22
14	Recreational Physical Activity and Outcomes After Breast Cancer in Women at High Familial Risk. JNCI Cancer Spectrum, 2021, 5, pkab090.	2.9	1
15	Considerations When Using Breast Cancer Risk Models for Women with Negative BRCA1/BRCA2 Mutation Results. Journal of the National Cancer Institute, 2020, 112, 418-422.	6.3	1
16	Recreational Physical Activity Is Associated with Reduced Breast Cancer Risk in Adult Women at High Risk for Breast Cancer: A Cohort Study of Women Selected for Familial and Genetic Risk. Cancer Research, 2020, 80, 116-125.	0.9	37
17	Interval breast cancer risk associations with breast density, family history and breast tissue aging. International Journal of Cancer, 2020, 147, 375-382.	5.1	22
18	Fine-mapping of 150 breast cancer risk regions identifies 191 likely target genes. Nature Genetics, 2020, 52, 56-73.	21.4	120

#	Article	IF	CITATIONS
19	Genetic and environmental causes of variation in epigenetic aging across the lifespan. Clinical Epigenetics, 2020, 12, 158.	4.1	33
20	Going Beyond Conventional Mammographic Density to Discover Novel Mammogram-Based Predictors of Breast Cancer Risk. Journal of Clinical Medicine, 2020, 9, 627.	2.4	23
21	The Association Between Chronic Disease and Psychological Distress: An Australian Twin Study. Twin Research and Human Genetics, 2020, 23, 322-329.	0.6	3
22	Inference about causation between body mass index and DNA methylation in blood from a twin family study. International Journal of Obesity, 2019, 43, 243-252.	3.4	48
23	The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer. Npj Breast Cancer, 2019, 5, 38.	5.2	28
24	The Association between Socioeconomic Status and Psychological Distress: A Within and Between Twin Study. Twin Research and Human Genetics, 2019, 22, 312-320.	0.6	13
25	DNA methylation-based biological age, genome-wide average DNA methylation, and conventional breast cancer risk factors. Scientific Reports, 2019, 9, 15055.	3.3	18
26	Accuracy of Risk Estimates from the iPrevent Breast Cancer Risk Assessment and Management Tool. JNCI Cancer Spectrum, 2019, 3, pkz066.	2.9	8
27	Ability of known susceptibility SNPs to predict colorectal cancer risk for persons with and without a family history. Familial Cancer, 2019, 18, 389-397.	1.9	23
28	Regular use of aspirin and other non-steroidal anti-inflammatory drugs and breast cancer risk for women at familial or genetic risk: a cohort study. Breast Cancer Research, 2019, 21, 52.	5.0	44
29	Benign breast disease increases breast cancer risk independent of underlying familial risk profile: Findings from a Prospective Family Study Cohort. International Journal of Cancer, 2019, 145, 370-379.	5.1	9
30	Mortality after breast cancer as a function of time since diagnosis by estrogen receptor status and age at diagnosis. International Journal of Cancer, 2019, 145, 3207-3217.	5.1	14
31	10-year performance of four models of breast cancer risk: a validation study. Lancet Oncology, The, 2019, 20, 504-517.	10.7	116
32	Alcohol consumption, cigarette smoking, and familial breast cancer risk: findings from the Prospective Family Study Cohort (ProF-SC). Breast Cancer Research, 2019, 21, 128.	5.0	27
33	Risk-Reducing Oophorectomy and Breast Cancer Risk Across the Spectrum of Familial Risk. Journal of the National Cancer Institute, 2019, 111, 331-334.	6.3	31
34	Breast Cancer Risk Associations with Digital Mammographic Density by Pixel Brightness Threshold and Mammographic System. Radiology, 2018, 286, 433-442.	7.3	29
35	Cirrus: An Automated Mammography-Based Measure of Breast Cancer Risk Based on Textural Features. JNCI Cancer Spectrum, 2018, 2, pky057.	2.9	24
36	Age-specific breast cancer risk by body mass index and familial risk: prospective family study cohort (ProF-SC). Breast Cancer Research, 2018, 20, 132.	5.0	51

#	Article	IF	CITATIONS
37	Predicting interval and screen-detected breast cancers from mammographic density defined by different brightness thresholds. Breast Cancer Research, 2018, 20, 152.	5.0	24
38	Validation of a genetic risk score for Arkansas women of color. PLoS ONE, 2018, 13, e0204834.	2.5	12
39	Genome-wide average DNA methylation is determined in utero. International Journal of Epidemiology, 2018, 47, 908-916.	1.9	38
40	Causal effect of smoking on DNA methylation in peripheral blood: a twin and family study. Clinical Epigenetics, 2018, 10, 18.	4.1	95
41	Mammographic density defined by higher than conventional brightness thresholds better predicts breast cancer risk. International Journal of Epidemiology, 2017, 46, dyw212.	1.9	24
42	Genetic and Environmental Factors in Invasive Cervical Cancer: Design and Methods of a Classical Twin Study. Twin Research and Human Genetics, 2017, 20, 10-18.	0.6	11
43	Causes of blood methylomic variation for middle-aged women measured by the HumanMethylation450 array. Epigenetics, 2017, 12, 973-981.	2.7	14
44	Testing for Gene-Environment Interactions Using a Prospective Family Cohort Design: Body Mass Index in Early and Later Adulthood and Risk of Breast Cancer. American Journal of Epidemiology, 2017, 185, 487-500.	3.4	5
45	Monogenic and polygenic determinants of sarcoma risk: an international genetic study. Lancet Oncology, The, 2016, 17, 1261-1271.	10.7	161
46	Breast Cancer Risk Prediction Using Clinical Models and 77 Independent Risk-Associated SNPs for Women Aged Under 50 Years: Australian Breast Cancer Family Registry. Cancer Epidemiology Biomarkers and Prevention, 2016, 25, 359-365.	2.5	96
47	Quantifying the utility of single nucleotide polymorphisms to guide colorectal cancer screening. Future Oncology, 2016, 12, 503-513.	2.4	42
48	Childhood body mass index and adult mammographic density measures that predict breast cancer risk. Breast Cancer Research and Treatment, 2016, 156, 163-170.	2.5	19
49	Genetic and Environmental Causes of Variation in the Difference Between Biological Age Based on DNA Methylation and Chronological Age for Middle-Aged Women. Twin Research and Human Genetics, 2015, 18, 720-726.	0.6	43
50	SNPs and breast cancer risk prediction for African American and Hispanic women. Breast Cancer Research and Treatment, 2015, 154, 583-589.	2.5	49
51	Role of tumour molecular and pathology features to estimate colorectal cancer risk for first-degree relatives. Gut, 2015, 64, 101-110.	12.1	40
52	Reproductive risk factors and oestrogen/progesterone receptor-negative breast cancer in the Breast Cancer Family Registry. British Journal of Cancer, 2014, 110, 1367-1377.	6.4	48
53	2q36.3 is associated with prognosis for oestrogen receptor-negative breast cancer patients treated with chemotherapy. Nature Communications, 2014, 5, 4051.	12.8	16
54	Cancer Risks for Relatives of Children with Cancer. Journal of Cancer Epidemiology, 2014, 2014, 1-4.	1.1	10

#	Article	IF	CITATIONS
55	A large-scale assessment of two-way SNP interactions in breast cancer susceptibility using 46 450 cases and 42 461 controls from the breast cancer association consortium. Human Molecular Genetics, 2014, 23, 1934-1946.	2.9	32
56	Genetic variation in mitotic regulatory pathway genes is associated with breast tumor grade. Human Molecular Genetics, 2014, 23, 6034-6046.	2.9	12
57	Genetic variation at CYP3A is associated with age at menarche and breast cancer risk: a case-control study. Breast Cancer Research, 2014, 16, R51.	5.0	14
58	Using SNP genotypes to improve the discrimination of a simple breast cancer risk prediction model. Breast Cancer Research and Treatment, 2013, 139, 887-896.	2.5	33
59	Tumour morphology predicts PALB2 germline mutation status. British Journal of Cancer, 2013, 109, 154-163.	6.4	19
60	Prospective validation of the breast cancer risk prediction model BOADICEA and a batch-mode version BOADICEACentre. British Journal of Cancer, 2013, 109, 1296-1301.	6.4	44
61	Architecture of cortical bone determines in part its remodelling and structural decay. Bone, 2013, 55, 353-358.	2.9	31
62	Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nature Genetics, 2013, 45, 353-361.	21.4	960
63	Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk. PLoS Genetics, 2013, 9, e1003212.	3.5	244
64	Explaining Variance in the <i>Cumulus</i> Mammographic Measures That Predict Breast Cancer Risk: A Twins and Sisters Study. Cancer Epidemiology Biomarkers and Prevention, 2013, 22, 2395-2403.	2.5	36
65	Inference about Causation from Examination of Familial Confounding: Application to Longitudinal Twin Data on Mammographic Density Measures that Predict Breast Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2012, 21, 1149-1155.	2.5	34
66	Using tumour pathology to identify people at high genetic risk of breast and colorectal cancers. Pathology, 2012, 44, 89-98.	0.6	7
67	Tumour morphology of early-onset breast cancers predicts breast cancer risk for first-degree relatives: the Australian Breast Cancer Family Registry. Breast Cancer Research, 2012, 14, R122.	5.0	9
68	11q13 is a susceptibility locus for hormone receptor positive breast cancer. Human Mutation, 2012, 33, 1123-1132.	2.5	35
69	An increased incidence of Hodgkin's lymphoma in patients with adult-onset sarcoma. Clinical Sarcoma Research, 2012, 2, 1.	2.3	15
70	Are genetic and environmental components of variance in mammographic density measures that predict breast cancer risk independent of within-twin pair differences in body mass index?. Breast Cancer Research and Treatment, 2012, 131, 553-559.	2.5	3
71	Confirmation of 5p12 As a Susceptibility Locus for Progesterone-Receptor–Positive, Lower Grade Breast Cancer. Cancer Epidemiology Biomarkers and Prevention, 2011, 20, 2222-2231.	2.5	27
72	Associations of Breast Cancer Risk Factors With Tumor Subtypes: A Pooled Analysis From the Breast Cancer Association Consortium Studies. Journal of the National Cancer Institute, 2011, 103, 250-263.	6.3	596

#	Article	IF	CITATIONS
73	Low penetrance breast cancer susceptibility loci are associated with specific breast tumor subtypes: findings from the Breast Cancer Association Consortium. Human Molecular Genetics, 2011, 20, 3289-3303.	2.9	152
74	Morphological predictors of BRCA1 germline mutations in young women with breast cancer. British Journal of Cancer, 2011, 104, 903-909.	6.4	40
75	Breast Cancer Risk for Noncarriers of Family-Specific <i>BRCA1</i> and <i>BRCA2</i> Mutations: Findings From the Breast Cancer Family Registry. Journal of Clinical Oncology, 2011, 29, 4505-4509.	1.6	38
76	The potential value of sibling controls compared with population controls for association studies of lifestyle-related risk factors: an example from the Breast Cancer Family Registry. International Journal of Epidemiology, 2011, 40, 1342-1354.	1.9	18
77	Evaluation of variation in the phosphoinositide-3-kinase catalytic subunit alpha oncogene and breast cancer risk. British Journal of Cancer, 2011, 105, 1934-1939.	6.4	4
78	Assessing interactions between the associations of common genetic susceptibility variants, reproductive history and body mass index with breast cancer risk in the breast cancer association consortium: a combined case-control study. Breast Cancer Research, 2010, 12, R110.	5.0	82
79	Comparing the frequency of common genetic variants and haplotypes between carriers and non-carriers of BRCA1 and BRCA2deleterious mutations in Australian women diagnosed with breast cancer before 40 years of age. BMC Cancer, 2010, 10, 466.	2.6	12
80	Increased cancer risks for relatives of very early-onset breast cancer cases with and without BRCA1 and BRCA2 mutations. British Journal of Cancer, 2010, 103, 1103-1108.	6.4	30
81	Common Genetic Variants Associated with Breast Cancer and Mammographic Density Measures That Predict Disease. Cancer Research, 2010, 70, 1449-1458.	0.9	74
82	Family-based association study of IGF1 microsatellites and height, weight, and body mass index. Journal of Human Genetics, 2010, 55, 255-258.	2.3	4
83	Family-based genetic association study of insulin-like growth factor I microsatellite markers and premenopausal breast cancer risk. Breast Cancer Research and Treatment, 2009, 118, 415-424.	2.5	5
84	Is BRCA2 c.9079 GÂ>ÂA a predisposing variant for early onset breast cancer?. Breast Cancer Research and Treatment, 2008, 109, 177-179.	2.5	2
85	The RAD51D E233G variant and breast cancer risk: population-based and clinic-based family studies of Australian women. Breast Cancer Research and Treatment, 2008, 112, 35-39.	2.5	9
86	Psychosocial Factors and Survival of Young Women With Breast Cancer: A Population-Based Prospective Cohort Study. Journal of Clinical Oncology, 2008, 26, 4666-4671.	1.6	77
87	Predictors of Mammographic Density: Insights Gained from a Novel Regression Analysis of a Twin Study. Cancer Epidemiology Biomarkers and Prevention, 2008, 17, 3474-3481.	2.5	52
88	Imputation of Missing Ages in Pedigree Data. Human Heredity, 2007, 63, 168-174.	0.8	1
89	Mammographic Density and Candidate Gene Variants: A Twins and Sisters Study. Cancer Epidemiology Biomarkers and Prevention, 2007, 16, 1479-1484.	2.5	29
90	A Systematic Approach to Analysing Gene-Gene Interactions: Polymorphisms at the Microsomal Epoxide Hydrolase EPHX and Glutathione S-transferase GSTM1, GSTT1, and GSTP1 Loci and Breast Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2007, 16, 769-774.	2.5	39

#	Article	IF	CITATIONS
91	Medical radiation exposure and breast cancer risk: Findings from the Breast Cancer Family Registry. International Journal of Cancer, 2007, 121, 386-394.	5.1	53
92	Validation study of the <scp>lambda</scp> model for predicting the <i>BRCA1</i> or <i>BRCA2</i> mutation carrier status of North American Ashkenazi Jewish women. Clinical Genetics, 2007, 72, 87-97.	2.0	12
93	Is there a positive association between mammographic density and bone mineral density?. Breast Cancer Research, 2006, 8, 401.	5.0	8
94	Tracing 8,600 participants 36 years after recruitment at age seven for the Tasmanian Asthma Study. Australian and New Zealand Journal of Public Health, 2006, 30, 105-110.	1.8	35
95	Using Bivariate Models to Understand between- and within-Cluster Regression Coefficients, with Application to Twin Data. Biometrics, 2006, 62, 745-751.	1.4	19
96	An inverse association between ovarian cysts and breast cancer in the breast cancer family registry. International Journal of Cancer, 2006, 118, 197-202.	5.1	9
97	The Heritability of Mammographically Dense and Nondense Breast Tissue. Cancer Epidemiology Biomarkers and Prevention, 2006, 15, 612-617.	2.5	101
98	A protein-truncating mutation inCYP17A1 in three sisters with early-onset breast cancer. Human Mutation, 2005, 26, 298-302.	2.5	11
99	Oral Contraceptive Use and Risk of Early-Onset Breast Cancer in Carriers and Noncarriers of <i>BRCA1</i> and <i>BRCA2</i> Mutations. Cancer Epidemiology Biomarkers and Prevention, 2005, 14, 350-356.	2.5	133
100	Is There Overlap Between the Genetic Determinants of Mammographic Density and Bone Mineral Density?. Cancer Epidemiology Biomarkers and Prevention, 2005, 14, 2266-2268.	2.5	9
101	CYP17genetic polymorphism, breast cancer, and breast cancer risk factors: Australian Breast Cancer Family Study. Breast Cancer Research, 2005, 7, R513-21.	5.0	24
102	The AIB1 glutamine repeat polymorphism is not associated with risk of breast cancer before age 40 years in Australian women. Breast Cancer Research, 2005, 7, R353-6.	5.0	11
103	The androgen receptor CAG repeat polymorphism and modification of breast cancer risk in BRCA1 and BRCA2 mutation carriers. Breast Cancer Research, 2005, 7, R176.	5.0	45
104	Regressive logistic and proportional hazards disease models for withinâ€family analyses of measured genotypes, with application to a CYP17 polymorphism and breast cancer. Genetic Epidemiology, 2003, 24, 161-172.	1.3	22
105	Risk factors for breast cancer in young women by oestrogen receptor and progesterone receptor status. British Journal of Cancer, 2003, 89, 1661-1663.	6.4	36
106	Familial Risks, Early-Onset Breast Cancer, and BRCA1 and BRCA2 Germline Mutations. Journal of the National Cancer Institute, 2003, 95, 448-457.	6.3	150
107	RE: "PRESENTING STATISTICAL UNCERTAINTY IN TRENDS AND DOSE-RESPONSE RELATIONS". American Journal of Epidemiology, 2002, 155, 977-979.	3.4	2
108	Heritability of Mammographic Density, a Risk Factor for Breast Cancer. New England Journal of Medicine, 2002, 347, 886-894.	27.0	537

#	Article	IF	CITATIONS
109	AfterhMSH2 andhMLH1?what next? Analysis of three-generational, population-based, early-onset colorectal cancer families. International Journal of Cancer, 2002, 102, 166-171.	5.1	43
110	After BRCA1 and BRCA2—What Next? Multifactorial Segregation Analyses of Three-Generation, Population-Based Australian Families Affected by Female Breast Cancer. American Journal of Human Genetics, 2001, 68, 420-431.	6.2	97
111	Prevalence of self-reported arm morbidity following treatment for breast cancer in the Australian Breast Cancer Family Study. Breast, 2001, 10, 515-522.	2.2	52
112	RESPONSE: Re: HRAS1 Rare Minisatellite Alleles and Breast Cancer in Australian Women Under Age Forty Years. Journal of the National Cancer Institute, 2000, 92, 756-757.	6.3	2
113	HRAS1 Rare Minisatellite Alleles and Breast Cancer in Australian Women Under Age Forty Years. Journal of the National Cancer Institute, 1999, 91, 2107-2111.	6.3	18
114	BRCA1 mutations and other sequence variants in a population-based sample of Australian women with breast cancer. British Journal of Cancer, 1999, 79, 34-39.	6.4	73
115	Antenatal and Perinatal Antecedents of Moderate and Severe Spastic Cerebral Palsy. Obstetrical and Gynecological Survey, 1999, 54, 423-424.	0.4	0
116	Breast cancer in Australian women under the age of 40. Cancer Causes and Control, 1998, 9, 189-198.	1.8	101
117	Antenatal and Perinatal Antecedents of Moderate and Severe Spastic Cerebral Palsy. Australian and New Zealand Journal of Obstetrics and Gynaecology, 1998, 38, 377-383.	1.0	20
118	The histologic phenotypes of breast carcinoma occurring before age 40 years in women with and without BRCA1 or BRCA2 germline mutations. Cancer, 1998, 83, 2335-2345.	4.1	243
119	CFTR ΔF508 carrier status, risk of breast cancer before the age of 40 and histological grading in a population-based case-control study. , 1998, 79, 487-489.		19
120	Estrogen Receptor Polymorphism at Codon 325 and Risk of Breast Cancer in Women Before Age Forty. Journal of the National Cancer Institute, 1998, 90, 532-536.	6.3	43
121	The histologic phenotypes of breast carcinoma occurring before age 40 years in women with and without BRCA1 or BRCA2 germline mutations. Cancer, 1998, 83, 2335-2345.	4.1	4