
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3567306/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In situ preparation of gel polymer electrolyte for lithium batteries: Progress and perspectives. InformaÄnĀ-MateriĀ¡ly, 2022, 4, .	8.5	93
2	Genome and systems biology of <i>Melilotus albus</i> provides insights into coumarins biosynthesis. Plant Biotechnology Journal, 2022, 20, 592-609.	4.1	24
3	Industrial scale production of fibre batteries by a solution-extrusion method. Nature Nanotechnology, 2022, 17, 372-377.	15.6	110
4	Building low-temperature batteries: Non-aqueous or aqueous electrolyte?. Current Opinion in Electrochemistry, 2022, 33, 100949.	2.5	13
5	Sodiumâ€lon Battery with a Wide Operationâ€Temperature Range from â^'70 to 100 °C. Angewandte Chem 2022, 134, .	nie, 1.6	8
6	Sodiumâ€lon Battery with a Wide Operationâ€Temperature Range from â^'70 to 100 °C. Angewandte Chem International Edition, 2022, 61, e202116930.	nie <u>-</u> 7.2	46
7	Fluorinated Carbon Materials and the Applications in Energy Storage Systems. ACS Applied Energy Materials, 2022, 5, 3966-3978.	2.5	14
8	A Highly Stable Liâ€Organic Allâ€Solidâ€State Battery Based on Sulfide Electrolytes. Advanced Energy Materials, 2022, 12, .	10.2	17
9	Cathode Materials Challenge Varied with Different Electrolytes in Zinc Batteries. , 2022, 4, 190-204.		24
10	Promoting polysulfide redox kinetics by tuning the non-metallic p-band of Mo-based compounds. Journal of Materials Chemistry A, 2022, 10, 11477-11487.	5.2	10
11	Forage Yield, Canopy Characteristics, and Radiation Interception of Ten Alfalfa Varieties in an Arid Environment. Plants, 2022, 11, 1112.	1.6	6
12	Cleistogamous spike and chasmogamous spike carbon remobilization improve the seed potential yield of <i>Cleistogenes songorica</i> under water stress. Seed Science Research, 2022, 32, 34-45.	0.8	0
13	Hierarchical Sulfideâ€Rich Modification Layer on SiO/C Anode for Lowâ€Temperature Liâ€lon Batteries. Advanced Science, 2022, 9, e2104531.	5.6	17
14	VPO ₄ F Fluorophosphates Polyanion Cathodes for Highâ€Voltage Proton Storage. Angewandte Chemie - International Edition, 2022, 61, .	7.2	11
15	Decoupled amphoteric water electrolysis and its integration with Mn–Zn battery for flexible utilization of renewables. Energy and Environmental Science, 2021, 14, 883-889.	15.6	49
16	Ultrathin Silicon Nanolayer Implanted Ni _{<i>x</i>} Si/Ni Nanoparticles as Superlongâ€Cycle Lithiumâ€lon Anode Material. Small Structures, 2021, 2, 2000126.	6.9	18
17	The genome of <i>Cleistogenes songorica</i> provides a blueprint for functional dissection of dimorphic flower differentiation and drought adaptability. Plant Biotechnology Journal, 2021, 19, 532-547.	4.1	21
18	Prevention of Na Corrosion and Dendrite Growth for Long-Life Flexible Na–Air Batteries. ACS Central Science. 2021. 7. 335-344.	5.3	24

#	Article	IF	CITATIONS
19	Topology design of digital metamaterials for ultra-compact integrated photonic devices based on mode manipulation. Nanoscale Advances, 2021, 3, 4579-4588.	2.2	6
20	Mechanism-of-Action Elucidation of Reversible Li–CO ₂ Batteries Using the Water-in-Salt Electrolyte. ACS Applied Materials & Interfaces, 2021, 13, 7396-7404.	4.0	30
21	Stable High-Voltage Aqueous Zinc Battery Based on Carbon-Coated NaVPO ₄ F Cathode. ACS Sustainable Chemistry and Engineering, 2021, 9, 3223-3231.	3.2	26
22	Towards Highâ€Performance Zincâ€Based Hybrid Supercapacitors via Macroporesâ€Based Charge Storage in Organic Electrolytes. Angewandte Chemie - International Edition, 2021, 60, 9610-9617.	7.2	90
23	Towards Highâ€Performance Zincâ€Based Hybrid Supercapacitors via Macroporesâ€Based Charge Storage in Organic Electrolytes. Angewandte Chemie, 2021, 133, 9696-9703.	1.6	5
24	A universal method for rapid identification of alfalfa and burr medic seeds with an emphasis on discriminating different forage species. Grass and Forage Science, 2021, 76, 353-362.	1.2	1
25	Mechanochemical Synthesis of Pt/Nb2CTx MXene Composites for Enhanced Electrocatalytic Hydrogen Evolution. Materials, 2021, 14, 2426.	1.3	15
26	Revisiting the designing criteria of advanced solid electrolyte interphase on lithium metal anode under practical condition. Nano Energy, 2021, 83, 105847.	8.2	79
27	Direct View on the Origin of High Li ⁺ Transfer Impedance in Allâ€Solidâ€State Battery. Advanced Functional Materials, 2021, 31, 2103971.	7.8	23
28	Activity Origin and Catalyst Design Principles for Electrocatalytic Oxygen Evolution on Layered Transition Metal Oxide with Halogen Doping. Small Structures, 2021, 2, 2100069.	6.9	30
29	Green Synthesis and Optimization of 3D Nitrogenâ€Doped Carbon Network via Biomass Waste for Highly Efficient Bisphenol S Adsorption. ChemistrySelect, 2021, 6, 6348-6352.	0.7	2
30	Prussian Blue Cathode with Intercalation Pseudocapacitive Behavior for Lowâ€∓emperature Batteries. Advanced Energy and Sustainability Research, 2021, 2, 2100105.	2.8	11
31	A Highâ€Voltage Zn–Organic Battery Using a Nonflammable Organic Electrolyte. Angewandte Chemie, 2021, 133, 21193-21200.	1.6	5
32	A Highâ€Voltage Zn–Organic Battery Using a Nonflammable Organic Electrolyte. Angewandte Chemie - International Edition, 2021, 60, 21025-21032.	7.2	67
33	Advanced Electrolyte Design for Highâ€Energyâ€Density Liâ€Metal Batteries under Practical Conditions. Angewandte Chemie, 2021, 133, 25828-25842.	1.6	31
34	Molecular Tailoring of an n/pâ€ŧype Phenothiazine Organic Scaffold for Zinc Batteries. Angewandte Chemie - International Edition, 2021, 60, 20826-20832.	7.2	77
35	Advanced Electrolyte Design for Highâ€Energyâ€Density Liâ€Metal Batteries under Practical Conditions. Angewandte Chemie - International Edition, 2021, 60, 25624-25638.	7.2	81
36	Molecular Tailoring of an n/pâ€ŧype Phenothiazine Organic Scaffold for Zinc Batteries. Angewandte Chemie, 2021, 133, 20994-21000.	1.6	21

#	Article	IF	CITATIONS
37	Chemically Self-Charging Aqueous Zinc-Organic Battery. Journal of the American Chemical Society, 2021, 143, 15369-15377.	6.6	109
38	A Desolvationâ€Free Sodium Dualâ€Ion Chemistry for High Power Density and Extremely Low Temperature. Angewandte Chemie, 2021, 133, 24051.	1.6	5
39	Scalable production of high-performing woven lithium-ion fibre batteries. Nature, 2021, 597, 57-63.	13.7	270
40	A Desolvationâ€Free Sodium Dualâ€Ion Chemistry for High Power Density and Extremely Low Temperature. Angewandte Chemie - International Edition, 2021, 60, 23858-23862.	7.2	54
41	Hybrid Li-Ion Capacitor Operated within an All-Climate Temperature Range from â^'60 to +55 °C. ACS Applied Materials & Interfaces, 2021, 13, 45630-45638.	4.0	6
42	An all-climate CFx/Li battery with mechanism-guided electrolyte. Energy Storage Materials, 2021, 42, 477-483.	9.5	40
43	Self-assembled ZnO-carbon dots anode materials for high performance nickel-zinc alkaline batteries. Chemical Engineering Journal, 2021, 425, 130660.	6.6	29
44	Aqueous rechargeable zinc batteries: Challenges and opportunities. Current Opinion in Electrochemistry, 2021, 30, 100801.	2.5	14
45	Towards High Performance Li–S Batteries via Sulfonateâ€Rich COFâ€Modified Separator. Advanced Materials, 2021, 33, e2105178.	11.1	180
46	Promoting Rechargeable Batteries Operated at Low Temperature. Accounts of Chemical Research, 2021, 54, 3883-3894.	7.6	91
47	Progress and Prospects in Redox Mediators for Highly Reversible Lithium–Oxygen Batteries: A Minireview. Energy & Fuels, 2021, 35, 19302-19319.	2.5	10
48	Pd Doped Co3O4 Loaded on Carbon Nanofibers as Highly Efficient Free-Standing Electrocatalyst for Oxygen Reduction and Oxygen Evolution Reactions. Frontiers in Chemistry, 2021, 9, 812375.	1.8	2
49	Ammonium-ion batteries with a wide operating temperature window from â^'40 to 80Â °C. EScience, 2021, 1, 212-218.	25.0	49
50	Stable Li–Metal Batteries Enabled by in Situ Gelation of an Electrolyte and In-Built Fluorinated Solid Electrolyte Interface. ACS Applied Materials & Interfaces, 2021, 13, 60054-60062.	4.0	21
51	Genome-Wide Identification of NAC Transcription Factor Family and Functional Analysis of the Abiotic Stress-Responsive Genes in Medicago sativa L Journal of Plant Growth Regulation, 2020, 39, 324-337.	2.8	23
52	Covalent organic framework-based ultrathin crystalline porous film: manipulating uniformity of fluoride distribution for stabilizing lithium metal anode. Journal of Materials Chemistry A, 2020, 8, 3459-3467.	5.2	75
53	Hybrid electrolyte for advanced rechargeable batteries. Science Bulletin, 2020, 65, 92-93.	4.3	3
54	Molecular Design of Fused-Ring Phenazine Derivatives for Long-Cycling Alkaline Redox Flow Batteries. ACS Energy Letters, 2020, 5, 411-417.	8.8	136

#	Article	IF	CITATIONS
55	Pencil-drawing on nitrogen and sulfur co-doped carbon paper: An effective and stable host to pre-store Li for high-performance lithium–air batteries. Energy Storage Materials, 2020, 26, 593-603.	9.5	39
56	Spaceâ€Confined Atomic Clusters Catalyze Superassembly of Silicon Nanodots within Carbon Frameworks for Use in Lithiumâ€lon Batteries. Angewandte Chemie, 2020, 132, 3161-3166.	1.6	17
57	Spaceâ€Confined Atomic Clusters Catalyze Superassembly of Silicon Nanodots within Carbon Frameworks for Use in Lithiumâ€lon Batteries. Angewandte Chemie - International Edition, 2020, 59, 3137-3142.	7.2	52
58	Integrated analysis of co-expression, conserved genes and gene families reveal core regulatory network of heat stress response in Cleistogenes songorica, a xerophyte perennial desert plant. BMC Genomics, 2020, 21, 715.	1.2	9
59	Organic Flow Batteries: Recent Progress and Perspectives. Energy & amp; Fuels, 2020, 34, 13384-13411.	2.5	58
60	Annealingâ€Free Platinumâ^'Cobalt Alloy Nanoparticles on Nitrogenâ€Doped Mesoporous Carbon with Boosted Oxygen Electroreduction Performance. ChemElectroChem, 2020, 7, 3341-3346.	1.7	6
61	Stabilized Rechargeable Aqueous Zinc Batteries Using Ethylene Glycol as Water Blocker. ChemSusChem, 2020, 13, 5556-5564.	3.6	78
62	Efficient Renewable-to-Hydrogen Conversion via Decoupled Electrochemical Water Splitting. Cell Reports Physical Science, 2020, 1, 100138.	2.8	43
63	Highly Stable Lithium–Sulfur Batteries Achieved by a SnS/Porous Carbon Nanosheet Architecture Modified Celgard Separator. Advanced Functional Materials, 2020, 30, 2006297.	7.8	50
64	Extra lithium-ion storage capacity enabled by liquid-phase exfoliated indium selenide nanosheets conductive network. Energy and Environmental Science, 2020, 13, 2124-2133.	15.6	35
65	<i>In situ</i> structural evolution of the multi-site alloy electrocatalyst to manipulate the intermediate for enhanced water oxidation reaction. Energy and Environmental Science, 2020, 13, 2200-2208.	15.6	101
66	Salt-rich solid electrolyte interphase for safer high-energy-density Li metal batteries with limited Li excess. Chemical Communications, 2020, 56, 8257-8260.	2.2	22
67	Zinc–Organic Battery with a Wide Operationâ€Temperature Window from â^'70 to 150 °C. Angewandte Chemie - International Edition, 2020, 59, 14577-14583.	7.2	158
68	Zinc–Organic Battery with a Wide Operationâ€Temperature Window from â^'70 to 150 °C. Angewandte Chemie, 2020, 132, 14685-14691.	1.6	49
69	A Highâ€Rate and Longâ€Life Rechargeable Battery Operated at â^75  o C. Batteries and Supercaps, 2020, 3, 1016-1020.	2.4	17
70	Lowâ€Temperature Charge/Discharge of Rechargeable Battery Realized by Intercalation Pseudocapacitive Behavior. Advanced Science, 2020, 7, 2000196.	5.6	82
71	Binding Zinc Ions by Carboxyl Groups from Adjacent Molecules toward Longâ€Life Aqueous Zinc–Organic Batteries. Advanced Materials, 2020, 32, e2000338.	11.1	215
72	Energizing hybrid supercapacitors by using Mn ²⁺ -based active electrolyte. Journal of Materials Chemistry A, 2020, 8, 15051-15057.	5.2	13

#	Article	IF	CITATIONS
73	Garnet-Based All-Ceramic Lithium Battery Enabled by Li2.985B0.005OCl Solder. IScience, 2020, 23, 101071.	1.9	23
74	Organic Cathode Materials for Rechargeable Zinc Batteries: Mechanisms, Challenges, and Perspectives. ChemSusChem, 2020, 13, 2160-2185.	3.6	121
75	Intercalation Pseudocapacitive Nanoscale Nickel Hexacyanoferrate@Carbon Nanotubes as a High-Rate Cathode Material for Aqueous Sodium-Ion Battery. ACS Sustainable Chemistry and Engineering, 2020, 8, 3655-3663.	3.2	39
76	An organic/inorganic electrode-based hydronium-ion battery. Nature Communications, 2020, 11, 959.	5.8	157
77	An aqueous manganese–lead battery for large-scale energy storage. Journal of Materials Chemistry A, 2020, 8, 5959-5967.	5.2	29
78	Organic-Inorganic-Induced Polymer Intercalation into Layered Composites for Aqueous Zinc-Ion Battery. CheM, 2020, 6, 968-984.	5.8	274
79	Highly Reversible Zn Anode Enabled by Controllable Formation of Nucleation Sites for Znâ€Based Batteries. Advanced Functional Materials, 2020, 30, 1908528.	7.8	523
80	Li/Garnet Interface Stabilization by Thermalâ€Đecomposition Vapor Deposition of an Amorphous Carbon Layer. Angewandte Chemie - International Edition, 2020, 59, 5346-5349.	7.2	42
81	Using Na7V4(P2O7)4(PO4) with superior Na storage performance as bipolar electrodes to build a novel high-energy-density symmetric sodium-ion full battery. Journal of Power Sources, 2020, 451, 227734.	4.0	25
82	Solid-State Proton Battery Operated at Ultralow Temperature. ACS Energy Letters, 2020, 5, 685-691.	8.8	125
83	Li–air Battery with a Superhydrophobic Li-Protective Layer. ACS Applied Materials & Interfaces, 2020, 12, 23010-23016.	4.0	33
84	A New Strategy of Constructing a Highly Fluorinated Solidâ€Electrolyte Interface towards Highâ€Performance Lithium Anode. Advanced Materials Interfaces, 2020, 7, 2000154.	1.9	18
85	Progress of Organic Electrodes in Aqueous Electrolyte for Energy Storage and Conversion. Angewandte Chemie - International Edition, 2020, 59, 18322-18333.	7.2	86
86	Progress of Organic Electrodes in Aqueous Electrolyte for Energy Storage and Conversion. Angewandte Chemie, 2020, 132, 18478-18489.	1.6	36
87	Coordinated mechanisms of leaves and roots in response to drought stress underlying full-length transcriptome profiling in Vicia sativa L. BMC Plant Biology, 2020, 20, 165.	1.6	27
88	Recent Advances in Polymer Electrolytes for Zinc Ion Batteries: Mechanisms, Properties, and Perspectives. Advanced Energy Materials, 2020, 10, 1903977.	10.2	309
89	Boosting Polysulfide Redox Kinetics by Grapheneâ€5upported Ni Nanoparticles with Carbon Coating. Advanced Energy Materials, 2020, 10, 2000907.	10.2	89
90	Robust Negative Electrode Materials Derived from Carbon Dots and Porous Hydrogels for Highâ€Performance Hybrid Supercapacitors. Advanced Materials, 2019, 31, e1806197.	11.1	194

#	Article	IF	CITATIONS
91	Genome-Wide Identification and Expression Profiling of the <i>ERF</i> Gene Family in <i>Medicago sativa</i> L. Under Various Abiotic Stresses. DNA and Cell Biology, 2019, 38, 1056-1068.	0.9	45
92	A versatile single-ion electrolyte with a Grotthuss-like Li conduction mechanism for dendrite-free Li metal batteries. Energy and Environmental Science, 2019, 12, 2741-2750.	15.6	89
93	An Al-doped high voltage cathode of Na ₄ Co ₃ (PO ₄) ₂ P ₂ O ₇ enabling highly stable 4 V full sodium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 18940-18949.	5.2	37
94	CNT-Decorated Na ₄ Mn ₂ Co(PO ₄) ₂ P ₂ O ₇ Microspheres as a Novel High-Voltage Cathode Material for Sodium-Ion Batteries. ACS Applied Materials & amp; Interfaces, 2019, 11, 27813-27822.	4.0	44
95	Rose-like vanadium disulfide coated by hydrophilic hydroxyvanadium oxide with improved electrochemical performance as cathode material for aqueous zinc-ion batteries. Journal of Power Sources, 2019, 437, 226917.	4.0	63
96	Oxygen vacancies enhance the electrochemical performance of carbon-coated TiP2O7-y anode in aqueous lithium ion batteries. Electrochimica Acta, 2019, 320, 134555.	2.6	18
97	Catalytic Cathodes: A Highly Reversible Longâ€Life Li–CO ₂ Battery with a RuP ₂ â€Based Catalytic Cathode (Small 29/2019). Small, 2019, 15, 1970155.	5.2	2
98	An All-Solid-State Sodium–Sulfur Battery Using a Sulfur/Carbonized Polyacrylonitrile Composite Cathode. ACS Applied Energy Materials, 2019, 2, 5263-5271.	2.5	42
99	Hierarchical microâ^'nanostructured and Al3+â^'doped Li1.2Ni0.2Mn0.6O2 active materials with enhanced electrochemical properties as cathode materials for Liâ^'ion batteries. Scripta Materialia, 2019, 171, 47-51.	2.6	7
100	Positive Surface Pseudocapacitive Behaviorâ€Induced Fast and Large Liâ€ion Storage in Mesoporous LiMnPO ₄ @C Nanofibers. ChemSusChem, 2019, 12, 3817-3826.	3.6	18
101	Dual oxidation by hybrid electrode: Efficiency enhancement of direct hypophosphite fuel cell. Journal of Power Sources, 2019, 438, 226983.	4.0	4
102	Lithium ion storage in lithium titanium germanate. Nano Energy, 2019, 66, 104094.	8.2	15
103	Nano-Cu-embedded carbon for dendrite-free lithium metal anodes. Journal of Materials Chemistry A, 2019, 7, 22930-22938.	5.2	17
104	Dynamic visualization of the phase transformation path in LiFePO ₄ during delithiation. Nanoscale, 2019, 11, 17557-17562.	2.8	12
105	Low-cost and high safe manganese-based aqueous battery for grid energy storage and conversion. Science Bulletin, 2019, 64, 1780-1787.	4.3	56
106	Organic Protonâ€Buffer Electrode to Separate Hydrogen and Oxygen Evolution in Acid Water Electrolysis. Angewandte Chemie, 2019, 131, 4670-4674.	1.6	35
107	Organic Protonâ€Buffer Electrode to Separate Hydrogen and Oxygen Evolution in Acid Water Electrolysis. Angewandte Chemie - International Edition, 2019, 58, 4622-4626.	7.2	56
108	Niobium-Doped Titanosilicate Sitinakite Anode with Low Working Potential and High Rate for Sodium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2019, 7, 4399-4405.	3.2	5

#	Article	IF	CITATIONS
109	Lithiophilic CuO Nanoflowers on Tiâ€Mesh Inducing Lithium Lateral Plating Enabling Stable Lithiumâ€Metal Anodes with Ultrahigh Rates and Ultralong Cycle Life. Advanced Energy Materials, 2019, 9, 1900853.	10.2	103
110	Building an Interfacial Framework: Li/Carnet Interface Stabilization through a Cu ₆ Sn ₅ Layer. ACS Energy Letters, 2019, 4, 1725-1731.	8.8	71
111	All-polymer particulate slurry batteries. Nature Communications, 2019, 10, 2513.	5.8	91
112	van der Waals Epitaxial Growth and Interfacial Passivation of Two-Dimensional Single-Crystalline Few-Layer Gray Arsenic Nanoflakes. Chemistry of Materials, 2019, 31, 4524-4535.	3.2	41
113	Mixed valence CoCuMnOx spinel nanoparticles by sacrificial template method with enhanced ORR performance. Applied Surface Science, 2019, 487, 1145-1151.	3.1	75
114	EST-SSR marker development based on RNA-sequencing of E. sibiricus and its application for phylogenetic relationships analysis of seventeen Elymus species. BMC Plant Biology, 2019, 19, 235.	1.6	34
115	Li/Na Ion Intercalation Process into Sodium Titanosilicate as Anode Material. Batteries and Supercaps, 2019, 2, 867-873.	2.4	12
116	High-performance Li-ion capacitor based on black-TiO2-x/graphene aerogel anode and biomass-derived microporous carbon cathode. Nano Research, 2019, 12, 1713-1719.	5.8	64
117	Engineering a High-Energy-Density and Long Lifespan Aqueous Zinc Battery via Ammonium Vanadium Bronze. ACS Applied Materials & Interfaces, 2019, 11, 20796-20803.	4.0	75
118	A polar TiO/MWCNT coating on a separator significantly suppress the shuttle effect in a lithium-sulfur battery. Electrochimica Acta, 2019, 310, 1-12.	2.6	56
119	A novel aqueous Li ⁺ (or Na ⁺)/Br ^{â^'} hybrid-ion battery with super high areal capacity and energy density. Journal of Materials Chemistry A, 2019, 7, 13050-13059.	5.2	13
120	Improved electrochemical performance of high voltage cathode Na3V2(PO4)2F3 for Na-ion batteries through potassium doping. Journal of Alloys and Compounds, 2019, 790, 203-211.	2.8	60
121	A dendrite-free Li plating host towards high utilization of Li metal anode in Li–O2 battery. Science Bulletin, 2019, 64, 478-484.	4.3	19
122	A Metal-Organic Framework Host for Highly Reversible Dendrite-free Zinc Metal Anodes. Joule, 2019, 3, 1289-1300.	11.7	672
123	Creating an Airâ€Stable Sulfurâ€Doped Black Phosphorusâ€TiO ₂ Composite as Highâ€Performance Anode Material for Sodiumâ€ion Storage. Advanced Functional Materials, 2019, 29, 1900535.	7.8	57
124	A few-layered MoS ₂ nanosheets/nitrogen-doped graphene 3D aerogel as a high performance and long-term stability supercapacitor electrode. Nanoscale, 2019, 11, 4318-4327.	2.8	45
125	Dual Lithiophilic Structure for Uniform Li Deposition. ACS Applied Materials & Interfaces, 2019, 11, 10616-10623.	4.0	43
126	Transcriptome-Wide Characterization and Functional Identification of the <i>Aquaporin</i> Gene Family During Drought Stress in Common Vetch. DNA and Cell Biology, 2019, 38, 374-384.	0.9	10

#	Article	IF	CITATIONS
127	Highâ€Energy Rechargeable Metallic Lithium Battery at â^'70 °C Enabled by a Cosolvent Electrolyte. Angewandte Chemie, 2019, 131, 5679-5683.	1.6	52
128	Highâ€Energy Rechargeable Metallic Lithium Battery at â^70 °C Enabled by a Cosolvent Electrolyte. Angewandte Chemie - International Edition, 2019, 58, 5623-5627.	7.2	217
129	Effects of organic solvents on morphologies, photoluminescence, and photocatalytic properties of ZnO nanostructures. Micro and Nano Letters, 2019, 14, 1146-1150.	0.6	5
130	Construction of the first high-density genetic linkage map and identification of seed yield-related QTLs and candidate genes in Elymus sibiricus, an important forage grass in Qinghai-Tibet Plateau. BMC Genomics, 2019, 20, 861.	1.2	12
131	Anchoring an Artificial Solid–Electrolyte Interphase Layer on a 3D Current Collector for Highâ€Performance Lithium Anodes. Angewandte Chemie - International Edition, 2019, 58, 2093-2097.	7.2	89
132	Ultrafast and ultrastable high voltage cathode of Na2+2xFe2-x(SO4)3 microsphere scaffolded by graphene for sodium ion batteries. Electrochimica Acta, 2019, 296, 345-354.	2.6	15
133	Redoxâ€Mediatorâ€Enhanced Electrochemical Capacitors: Recent Advances and Future Perspectives. ChemSusChem, 2019, 12, 1118-1132.	3.6	67
134	Genome-wide identification and characterization of the aquaporin gene family in Medicago truncatula. Journal of Plant Biochemistry and Biotechnology, 2019, 28, 320-335.	0.9	16
135	Anchoring an Artificial Solid–Electrolyte Interphase Layer on a 3D Current Collector for Highâ€Performance Lithium Anodes. Angewandte Chemie, 2019, 131, 2115-2119.	1.6	11
136	Ru nanosheet catalyst supported by three-dimensional nickel foam as a binder-free cathode for Li–CO2 batteries. Electrochimica Acta, 2019, 299, 592-599.	2.6	55
137	A Highly Reversible Longâ€Life Li–CO ₂ Battery with a RuP ₂ â€Based Catalytic Cathode. Small, 2019, 15, e1803246.	5.2	80
138	Recent Progress of Rechargeable Batteries Using Mild Aqueous Electrolytes. Small Methods, 2019, 3, 1800272.	4.6	387
139	Hydrothermal twoâ€dimensionalisation to porous ZnCo 2 O 4 nanosheets nonâ€platinum ORR catalyst. Micro and Nano Letters, 2019, 14, 665-668.	0.6	2
140	Synergistic Effects of Salt Concentration and Working Temperature towards Dendrite-Free Lithium Deposition. Research, 2019, 2019, 7481319.	2.8	10
141	Environment-Friendly and Flexible Aqueous Zinc Battery Using an Organic Cathode. ECS Meeting Abstracts, 2019, , .	0.0	0
142	Organic Batteries Operated at â^'70°C. Joule, 2018, 2, 902-913.	11.7	289
143	A flexible polymer-based Li–air battery using a reduced graphene oxide/Li composite anode. Journal of Materials Chemistry A, 2018, 6, 6022-6032.	5.2	59
144	Highly stable carbon coated Mg2Si intermetallic nanoparticles for lithium-ion battery anode. Journal of Power Sources, 2018, 384, 10-17.	4.0	26

#	Article	IF	CITATIONS
145	Strong Capillarity, Chemisorption, and Electrocatalytic Capability of Crisscrossed Nanostraws Enabled Flexible, High-Rate, and Long-Cycling Lithium–Sulfur Batteries. ACS Nano, 2018, 12, 4868-4876.	7.3	222
146	Integrating Desalination and Energy Storage using a Saltwaterâ€based Hybrid Sodiumâ€ion Supercapacitor. ChemSusChem, 2018, 11, 1741-1745.	3.6	40
147	High energy density hybrid lithium-ion capacitor enabled by Co3ZnC@N-doped carbon nanopolyhedra anode and microporous carbon cathode. Energy Storage Materials, 2018, 14, 246-252.	9.5	120
148	Ultrasmall TiO ₂ -Coated Reduced Graphene Oxide Composite as a High-Rate and Long-Cycle-Life Anode Material for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 14818-14826.	4.0	54
149	A clean and membrane-free chlor-alkali process with decoupled Cl2 and H2/NaOH production. Nature Communications, 2018, 9, 438.	5.8	76
150	Decoupling Hydrogen and Oxygen Production in Acidic Water Electrolysis Using a Polytriphenylamineâ€Based Battery Electrode. Angewandte Chemie - International Edition, 2018, 57, 2904-2908.	7.2	86
151	Interface Engineering of Anchored Ultrathin TiO ₂ /MoS ₂ Heterolayers for Highly-Efficient Electrochemical Hydrogen Production. ACS Applied Materials & Interfaces, 2018, 10, 6084-6089.	4.0	47
152	A high voltage cathode of Na _{2+2x} Fe _{2â^'x} (SO ₄) ₃ intensively protected by nitrogen-doped graphene with improved electrochemical performance of sodium storage. Journal of Materials Chemistry A, 2018, 6, 4354-4364.	5.2	43
153	Li2TiSiO5 and expanded graphite nanocomposite anode material withÂimproved rate performance for lithium-ion batteries. Electrochimica Acta, 2018, 260, 695-702.	2.6	31
154	Synergetic Protective Effect of the Ultralight MWCNTs/NCQDs Modified Separator for Highly Stable Lithium–Sulfur Batteries. Advanced Energy Materials, 2018, 8, 1702288.	10.2	249
155	Nature-Derived Approach to Oxygen and Chlorine Dual-Vacancies for Efficient Photocatalysis and Photoelectrochemistry. ACS Sustainable Chemistry and Engineering, 2018, 6, 2395-2406.	3.2	80
156	Walnutâ€Like Multicore–Shell MnO Encapsulated Nitrogenâ€Rich Carbon Nanocapsules as Anode Material for Longâ€Cycling and Softâ€Packed Lithiumâ€Ion Batteries. Advanced Functional Materials, 2018, 28, 1800003.	7.8	191
157	Progress in Aqueous Rechargeable Sodiumâ€lon Batteries. Advanced Energy Materials, 2018, 8, 1703008.	10.2	297
158	Decoupling Hydrogen and Oxygen Production in Acidic Water Electrolysis Using a Polytriphenylamineâ€Based Battery Electrode. Angewandte Chemie, 2018, 130, 2954-2958.	1.6	17
159	A gel polymer electrolyte based lithium‑sulfur battery with low self-discharge. Solid State Ionics, 2018, 318, 82-87.	1.3	50
160	Integrated perovskite solar capacitors with high energy conversion efficiency and fast photo-charging rate. Journal of Materials Chemistry A, 2018, 6, 2047-2052.	5.2	85
161	<i>In situ</i> encapsulation of core–shell-structured Co@Co ₃ O ₄ into nitrogen-doped carbon polyhedra as a bifunctional catalyst for rechargeable Zn–air batteries. Journal of Materials Chemistry A, 2018, 6, 1443-1453.	5.2	178
162	Combining water reduction and liquid fuel oxidization by nickel hydroxide for flexible hydrogen production. Energy Storage Materials, 2018, 11, 260-266.	9.5	24

#	Article	IF	CITATIONS
163	Efficient solar-driven electrocatalytic CO2 reduction in a redox-medium-assisted system. Nature Communications, 2018, 9, 5003.	5.8	97
164	Atomic Substitution Enabled Synthesis of Vacancy-Rich Two-Dimensional Black TiO _{2–<i>x</i>} Nanoflakes for High-Performance Rechargeable Magnesium Batteries. ACS Nano, 2018, 12, 12492-12502.	7.3	116
165	Na1.68H0.32Ti2O3SiO4·1.76H2O as a Low-Potential Anode Material for Sodium-Ion Battery. ACS Applied Energy Materials, 2018, , .	2.5	4
166	Ionic liquid-immobilized polymer gel electrolyte with self-healing capability, high ionic conductivity and heat resistance for dendrite-free lithium metal batteries. Nano Energy, 2018, 54, 17-25.	8.2	168
167	Black Phosphorus Stabilizing Na ₂ Ti ₃ O ₇ /C Each Other with an Improved Electrochemical Property for Sodium-Ion Storage. ACS Applied Materials & Interfaces, 2018, 10, 37163-37171.	4.0	35
168	Flexible Lithium–Air Battery in Ambient Air with an Inâ€Situ Formed Gel Electrolyte. Angewandte Chemie - International Edition, 2018, 57, 16131-16135.	7.2	89
169	Flexible Lithium–Air Battery in Ambient Air with an Inâ€Situ Formed Gel Electrolyte. Angewandte Chemie, 2018, 130, 16363-16367.	1.6	63
170	Challenges, mitigation strategies and perspectives in development of zinc-electrode materials and fabrication for rechargeable zinc–air batteries. Energy and Environmental Science, 2018, 11, 3075-3095.	15.6	324
171	High-Performance Alkaline Organic Redox Flow Batteries Based on 2-Hydroxy-3-carboxy-1,4-naphthoquinone. ACS Energy Letters, 2018, 3, 2404-2409.	8.8	104
172	Electrochemical Doubleâ€Layer Capacitor Energized by Adding an Ambipolar Organic Redox Radical into the Electrolyte. Angewandte Chemie, 2018, 130, 8346-8350.	1.6	13
173	Electrochemical Doubleâ€Layer Capacitor Energized by Adding an Ambipolar Organic Redox Radical into the Electrolyte. Angewandte Chemie - International Edition, 2018, 57, 8214-8218.	7.2	59
174	In Situ Growth of NiFe Alloy Nanoparticles Embedded into N-Doped Bamboo-like Carbon Nanotubes as a Bifunctional Electrocatalyst for Zn–Air Batteries. ACS Applied Materials & Interfaces, 2018, 10, 26178-26187.	4.0	94
175	Highly Branched VS ₄ Nanodendrites with 1D Atomicâ€Chain Structure as a Promising Cathode Material for Longâ€Cycling Magnesium Batteries. Advanced Materials, 2018, 30, e1802563.	11.1	187
176	Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery. Nature Communications, 2018, 9, 2906.	5.8	1,036
177	An Environmentally Friendly and Flexible Aqueous Zinc Battery Using an Organic Cathode. Angewandte Chemie, 2018, 130, 11911-11915.	1.6	151
178	An Environmentally Friendly and Flexible Aqueous Zinc Battery Using an Organic Cathode. Angewandte Chemie - International Edition, 2018, 57, 11737-11741.	7.2	425
179	Self-doping of Ti3+into Na2Ti3O7 increases both ion and electron conductivity as a high-performance anode material for sodium-ion batteries. Journal of Alloys and Compounds, 2018, 767, 820-828.	2.8	37
180	Carbon quantum dots anchoring MnO 2 /graphene aerogel exhibits excellent performance as electrode materials for supercapacitor. Journal of Power Sources, 2018, 398, 167-174.	4.0	114

#	Article	IF	CITATIONS
181	Hypophosphites as Ecoâ€Compatible Fuels for Membraneâ€Free Direct Liquid Fuel Cells. Chemistry - A European Journal, 2018, 24, 10310-10314.	1.7	3
182	Three-dimensional spongy framework as superlyophilic, strongly absorbing, and electrocatalytic polysulfide reservoir layer for high-rate and long-cycling lithium-sulfur batteries. Nano Research, 2018, 11, 6436-6446.	5.8	38
183	S0.87Se0.13/CPAN composites as high capacity and stable cycling performance cathode for lithium sulfur battery. Electrochimica Acta, 2018, 281, 789-795.	2.6	26
184	The development in aqueous lithium-ion batteries. Journal of Energy Chemistry, 2018, 27, 1521-1535.	7.1	114
185	High Power Lithium-ion Battery based on Spinel Cathode and Hard Carbon Anode. Electrochimica Acta, 2017, 228, 251-258.	2.6	40
186	Aqueous Lithium-Ion Batteries Using Polyimide-Activated Carbon Composites Anode and Spinel LiMn ₂ O ₄ Cathode. ACS Sustainable Chemistry and Engineering, 2017, 5, 1503-1508.	3.2	40
187	Allâ€Organic Rechargeable Battery with Reversibility Supported by "Waterâ€inâ€Salt―Electrolyte. Chemistry - A European Journal, 2017, 23, 2560-2565.	1.7	111
188	Bottom-up synthesis of nitrogen-doped porous carbon scaffolds for lithium and sodium storage. Nanoscale, 2017, 9, 1972-1977.	2.8	42
189	TiP ₂ O ₇ and Expanded Graphite Nanocomposite as Anode Material for Aqueous Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 8075-8082.	4.0	54
190	Aqueous Mg-Ion Battery Based on Polyimide Anode and Prussian Blue Cathode. ACS Energy Letters, 2017, 2, 1115-1121.	8.8	283
191	Li ₂ TiSiO ₅ : a low potential and large capacity Ti-based anode material for Li-ion batteries. Energy and Environmental Science, 2017, 10, 1456-1464.	15.6	93
192	Carbon-coated Li ₄ Ti ₅ O ₁₂ nanoparticles with high electrochemical performance as anode material in sodium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 10902-10908.	5.2	52
193	Electrochemical Performance of Li 4 Ti 5 O 12 Nanowire/Fe 3 O 4 Nanoparticle Compound as Anode Material of Lithium Ion Batteries. Electrochimica Acta, 2017, 241, 179-188.	2.6	17
194	A PEO-based gel polymer electrolyte for lithium ion batteries. RSC Advances, 2017, 7, 23494-23501.	1.7	186
195	A Multifunction Lithium–Carbon Battery System Using a Dual Electrolyte. ACS Energy Letters, 2017, 2, 36-44.	8.8	28
196	A Longâ€Life Lithium–Air Battery in Ambient Air with a Polymer Electrolyte Containing a Redox Mediator. Angewandte Chemie, 2017, 129, 7613-7617.	1.6	50
197	A Longâ€Life Lithium–Air Battery in Ambient Air with a Polymer Electrolyte Containing a Redox Mediator. Angewandte Chemie - International Edition, 2017, 56, 7505-7509.	7.2	124
198	A Rechargeable Li O ₂ Battery with a Gel Polymer Electrolyte. Angewandte Chemie - International Edition, 2017, 56, 9126-9130.	7.2	154

#	Article	IF	CITATIONS
199	A Rechargeable Li O ₂ Battery with a Gel Polymer Electrolyte. Angewandte Chemie, 2017, 129, 9254-9258.	1.6	22
200	Three-dimensionally ordered, ultrathin graphitic-carbon frameworks with cage-like mesoporosity for highly stable Li-S batteries. Nano Research, 2017, 10, 2495-2507.	5.8	30
201	A flexible symmetric sodium full cell constructed using the bipolar material Na ₃ V ₂ (PO ₄) ₃ . Journal of Materials Chemistry A, 2017, 5, 8440-8450.	5.2	61
202	Manganese vanadium oxide hollow microspheres: a novel electrocatalyst for oxygen reduction reaction. Journal of Solid State Electrochemistry, 2017, 21, 1743-1749.	1.2	11
203	Highly Efficient Retention of Polysulfides in "Sea Urchin―Like Carbon Nanotube/Nanopolyhedra Superstructures as Cathode Material for Ultralong-Life Lithium–Sulfur Batteries. Nano Letters, 2017, 17, 437-444.	4.5	223
204	All-solid-state secondary lithium battery using solid polymer electrolyte and anthraquinone cathode. Solid State Ionics, 2017, 300, 114-119.	1.3	43
205	Pine needle-derived microporous nitrogen-doped carbon frameworks exhibit high performances in electrocatalytic hydrogen evolution reaction and supercapacitors. Nanoscale, 2017, 9, 1237-1243.	2.8	154
206	Carbon Quantum Dot-Induced MnO ₂ Nanowire Formation and Construction of a Binder-Free Flexible Membrane with Excellent Superhydrophilicity and Enhanced Supercapacitor Performance. ACS Applied Materials & Interfaces, 2017, 9, 40394-40403.	4.0	81
207	Synthesis of ZnSb@C microflower composites and their enhanced electrochemical performance for lithium-ion and sodium-ion batteries. New Journal of Chemistry, 2017, 41, 13060-13066.	1.4	18
208	High volumetric supercapacitor with a long life span based on polymer dots and graphene sheets. Journal of Power Sources, 2017, 364, 465-472.	4.0	27
209	Free-Standing Sandwich-Structured Flexible Film Electrode Composed of Na2Ti3O7 Nanowires@CNT and Reduced Graphene Oxide for Advanced Sodium-Ion Batteries. ACS Omega, 2017, 2, 5726-5736.	1.6	14
210	CsPb _{0.9} Sn _{0.1} IBr ₂ Based All-Inorganic Perovskite Solar Cells with Exceptional Efficiency and Stability. Journal of the American Chemical Society, 2017, 139, 14009-14012.	6.6	447
211	A sulfur–FePO ₄ –C nanocomposite cathode for stable and anti-self-discharge lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 17926-17932.	5.2	17
212	Multi-functional Flexible Aqueous Sodium-Ion Batteries with High Safety. CheM, 2017, 3, 348-362.	5.8	194
213	Self-generated hollow NaTi ₂ (PO ₄) ₃ nanocubes decorated with graphene as a large capacity and long lifetime anode for sodium-ion batteries. RSC Advances, 2017, 7, 56743-56751.	1.7	24
214	Porous-Shell Vanadium Nitride Nanobubbles with Ultrahigh Areal Sulfur Loading for High-Capacity and Long-Life Lithium–Sulfur Batteries. Nano Letters, 2017, 17, 7839-7846.	4.5	206
215	A Simple Prelithiation Strategy To Build a Highâ€Rate and Longâ€Life Lithiumâ€Ion Battery with Improved Lowâ€Temperature Performance. Angewandte Chemie - International Edition, 2017, 56, 16606-16610.	7.2	67
216	A Simple Prelithiation Strategy To Build a Highâ€Rate and Longâ€Life Lithiumâ€Ion Battery with Improved Lowâ€Temperature Performance. Angewandte Chemie, 2017, 129, 16833-16837.	1.6	9

#	Article	IF	CITATIONS
217	Improved electrochemical performance of a Li ₃ V ₂ (PO ₄) ₃ cathode in a wide potential window for lithium-ion storage by surface N-doped carbon coating and bulk K-doping. New Journal of Chemistry, 2017, 41, 8772-8780.	1.4	16
218	Crab-shell induced synthesis of ordered macroporous carbon nanofiber arrays coupled with MnCo ₂ O ₄ nanoparticles as bifunctional oxygen catalysts for rechargeable Zn–air batteries. Nanoscale, 2017, 9, 11148-11157.	2.8	39
219	High-Performance Li–Se Batteries Enabled by Selenium Storage in Bottom-Up Synthesized Nitrogen-Doped Carbon Scaffolds. ACS Applied Materials & Interfaces, 2017, 9, 25232-25238.	4.0	50
220	Roles of carbon nanotubes in novel energy storage devices. Carbon, 2017, 122, 462-474.	5.4	157
221	Cerium Oxide Nanocrystal Embedded Bimodal Micromesoporous Nitrogen-Rich Carbon Nanospheres as Effective Sulfur Host for Lithium–Sulfur Batteries. ACS Nano, 2017, 11, 7274-7283.	7.3	213
222	MoS ₂ â€Based Allâ€Purpose Fibrous Electrode and Selfâ€Powering Energy Fiber for Efficient Energy Harvesting and Storage. Advanced Energy Materials, 2017, 7, 1601208.	10.2	139
223	A oneâ€step way to novel carbonâ€niobium nitride nanoparticles for efficient oxygen reduction. Journal of the American Ceramic Society, 2017, 100, 638-646.	1.9	5
224	Superb Alkaline Hydrogen Evolution and Simultaneous Electricity Generation by Ptâ€Decorated Ni ₃ N Nanosheets. Advanced Energy Materials, 2017, 7, 1601390.	10.2	225
225	Nanosphere of Pbâ€modified bismuthâ€based borate photocatalysts. Micro and Nano Letters, 2017, 12, 430-434.	0.6	4
226	One-Step Synthesis of Trirutile Oxides ZnBi2O6-Graphene Oxide with Enhanced Photocatalytic Activity. Journal of Nanoscience and Nanotechnology, 2017, 17, 2006-2011.	0.9	1
227	Oneâ€step hydrothermal route to synthesise BilO ₄ /Bi ₂ O ₂ (BO) Tj ETQe Letters, 2017, 12, 944-948.	q1 1 0.784 0.6	1314 rgBT 2
228	Graphene‣upported Nitrogen and Boron Rich Carbon Layer for Improved Performance of Lithium–Sulfur Batteries Due to Enhanced Chemisorption of Lithium Polysulfides. Advanced Energy Materials, 2016, 6, 1501733.	10.2	162
229	Flexible Aqueous Lithiumâ€lon Battery with High Safety and Large Volumetric Energy Density. Angewandte Chemie - International Edition, 2016, 55, 7474-7477.	7.2	149
230	Highâ€Performance Lithium–Air Battery with a Coaxialâ€Fiber Architecture. Angewandte Chemie - International Edition, 2016, 55, 4487-4491.	7.2	189
231	Layer Controllable Graphene Using Graphite Intercalation Compounds with Different Stage Numbers through Li Conversion Reaction. Advanced Materials Interfaces, 2016, 3, 1500496.	1.9	4
232	Reversible switching between pressure-induced amorphization and thermal-driven recrystallization in VO2(B) nanosheets. Nature Communications, 2016, 7, 12214.	5.8	47
233	Elastic, magnetic and electronic properties of iridium phosphide Ir2P. Scientific Reports, 2016, 6, 21787.	1.6	15
234	Ruthenium oxide coated ordered mesoporous carbon nanofiber arrays: a highly bifunctional oxygen electrocatalyst for rechargeable Zn–air batteries. Journal of Materials Chemistry A, 2016, 4, 6282-6289.	5.2	63

#	Article	IF	CITATIONS
235	Emerging non-lithium ion batteries. Energy Storage Materials, 2016, 4, 103-129.	9.5	252
236	Design of a Hierarchical Ternary Hybrid for a Fiber-Shaped Asymmetric Supercapacitor with High Volumetric Energy Density. Journal of Physical Chemistry C, 2016, 120, 9685-9691.	1.5	140
237	A Selfâ€Healing Aqueous Lithiumâ€Ion Battery. Angewandte Chemie, 2016, 128, 14596-14600.	1.6	25
238	Carbon Dots/NiCo ₂ O ₄ Nanocomposites with Various Morphologies for High Performance Supercapacitors. Small, 2016, 12, 5927-5934.	5.2	190
239	A Selfâ€Healing Aqueous Lithium″on Battery. Angewandte Chemie - International Edition, 2016, 55, 14384-14388.	7.2	191
240	Ultra-long Na ₂ Ti ₃ O ₇ nanowires@carbon cloth as a binder-free flexible electrode with a large capacity and long lifetime for sodium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 17111-17120.	5.2	65
241	Hierarchical Ternary Carbide Nanoparticle/Carbon Nanotube-Inserted N-Doped Carbon Concave-Polyhedrons for Efficient Lithium and Sodium Storage. ACS Applied Materials & Interfaces, 2016, 8, 26834-26841.	4.0	52
242	Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chemical Society Reviews, 2016, 45, 5925-5950.	18.7	2,969
243	All-Inorganic Perovskite Solar Cells. Journal of the American Chemical Society, 2016, 138, 15829-15832.	6.6	899
244	Improvement on the high-rate performance of Mn-doped Na3V2(PO4)3/C as a cathode material for sodium ion batteries. RSC Advances, 2016, 6, 71581-71588.	1.7	67
245	In Situ Thermal Synthesis of Inlaid Ultrathin MoS ₂ /Graphene Nanosheets as Electrocatalysts for the Hydrogen Evolution Reaction. Chemistry of Materials, 2016, 28, 5733-5742.	3.2	166
246	Eggâ€Đerived Mesoporous Carbon Microspheres as Bifunctional Oxygen Evolution and Oxygen Reduction Electrocatalysts. Advanced Energy Materials, 2016, 6, 1600794.	10.2	177
247	Separating hydrogen and oxygen evolution in alkaline water electrolysis using nickel hydroxide. Nature Communications, 2016, 7, 11741.	5.8	332
248	Pressure-Driven Cooperative Spin-Crossover, Large-Volume Collapse, and Semiconductor-to-Metal Transition in Manganese(II) Honeycomb Lattices. Journal of the American Chemical Society, 2016, 138, 15751-15757.	6.6	91
249	Znâ€Air Batteries: Eggâ€Derived Mesoporous Carbon Microspheres as Bifunctional Oxygen Evolution and Oxygen Reduction Electrocatalysts (Adv. Energy Mater. 20/2016). Advanced Energy Materials, 2016, 6, .	10.2	0
250	High power lithium-ion battery based on a LiMn2O4 nanorod cathode and a carbon-coated Li4Ti5O12 nanowire anode. RSC Advances, 2016, 6, 107355-107363.	1.7	10
251	Three-Dimensional Ordered Macroporous FePO ₄ as High-Efficiency Catalyst for Rechargeable Li–O ₂ Batteries. ACS Applied Materials & Interfaces, 2016, 8, 31638-31645.	4.0	23
252	Low-cost and high-performance of a vertically grown 3D Ni–Fe layered double hydroxide/graphene aerogel supercapacitor electrode material. RSC Advances, 2016, 6, 107278-107285.	1.7	60

#	Article	IF	CITATIONS
253	Highâ€Performance Lithium–Air Battery with a Coaxialâ€Fiber Architecture. Angewandte Chemie, 2016, 128, 4563-4567.	1.6	23
254	Flexible Aqueous Lithiumâ€lon Battery with High Safety and Large Volumetric Energy Density. Angewandte Chemie, 2016, 128, 7600-7603.	1.6	20
255	Sodium Ion Transport Mechanisms in Antiperovskite Electrolytes Na ₃ OBr and Na ₄ OI ₂ : An <i>in Situ</i> Neutron Diffraction Study. Inorganic Chemistry, 2016, 55, 5993-5998.	1.9	68
256	Double-Nanocarbon Synergistically Modified Na ₃ V ₂ (PO ₄) ₃ : An Advanced Cathode for High-Rate and Long-Life Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 15341-15351.	4.0	133
257	The roles of endoplasmic reticulum stress response in female mammalian reproduction. Cell and Tissue Research, 2016, 363, 589-597.	1.5	55
258	Mesoporous Cd1â^'Zn S microspheres with tunable bandgap and high specific surface areas for enhanced visible-light-driven hydrogen generation. Journal of Colloid and Interface Science, 2016, 467, 97-104.	5.0	46
259	Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life. Science Advances, 2016, 2, e1501038.	4.7	282
260	Base–acid hybrid water electrolysis. Chemical Communications, 2016, 52, 3147-3150.	2.2	28
261	New Insights into the Role of Autophagy in Ovarian Cryopreservation by Vitrification1. Biology of Reproduction, 2016, 94, 137.	1.2	7
262	Electrochemical Profile of LiTi ₂ (PO ₄) ₃ and NaTi ₂ (PO ₄) ₃ in Lithium, Sodium or Mixed Ion Aqueous Solutions. Journal of the Electrochemical Society, 2016, 163, A904-A910.	1.3	40
263	Synthesis and Electrochemical Performance of Nano-sized Li4Ti5O12 Coated with Boron-Doped Carbon. Electrochimica Acta, 2016, 196, 300-308.	2.6	34
264	To mitigate self-discharge of lithium–sulfur batteries by optimizing ionic liquid electrolytes. Energy and Environmental Science, 2016, 9, 224-231.	15.6	196
265	A hierarchical structure of carbon-coated Li3VO4 nanoparticles embedded in expanded graphite for high performance lithium ion battery. Journal of Power Sources, 2016, 303, 333-339.	4.0	77
266	In-situ synthesis of graphene/nitrogen-doped ordered mesoporous carbon nanosheet for supercapacitor application. Carbon, 2016, 96, 955-964.	5.4	141
267	Enhanced visible-light-driven photocatalytic activity in yellow and black orthorhombic NaTaO 3 nanocubes by surface modification and simultaneous N/Ta 4+ co-doping. Journal of Colloid and Interface Science, 2016, 461, 185-194.	5.0	18
268	Leafâ€Like Grapheneâ€Oxideâ€Wrapped Sulfur for Highâ€Performance Lithium–Sulfur Battery. Advanced Science, 2015, 2, 1500071.	5.6	108
269	Flexible, Stretchable, and Rechargeable Fiberâ€Shaped Zinc–Air Battery Based on Crossâ€Stacked Carbon Nanotube Sheets. Angewandte Chemie - International Edition, 2015, 54, 15390-15394.	7.2	291
270	Realizing both High Energy and High Power Densities by Twisting Three Carbonâ€Nanotubeâ€Based Hybrid Fibers. Angewandte Chemie - International Edition, 2015, 54, 11177-11182.	7.2	97

#	Article	IF	CITATIONS
271	Prognostic role of HOTAIR in four estrogen-dependent malignant tumors: a meta-analysis. OncoTargets and Therapy, 2015, 8, 1471.	1.0	21
272	A hybrid aerogel of Co–Al layered double hydroxide/graphene with three-dimensional porous structure as a novel electrode material for supercapacitors. RSC Advances, 2015, 5, 26017-26026.	1.7	30
273	Cycling Stability of Spinel LiMn 2 O 4 with Different Particle Sizes in Aqueous Electrolyte. Electrochimica Acta, 2015, 173, 178-183.	2.6	52
274	Sandwich-like Cr ₂ O ₃ –graphite intercalation composites as high-stability anode materials for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 1703-1708.	5.2	45
275	Carbon Coated Li4Ti5O12 Nanowire with High Electrochemical Performance under Elevated Temperature. Electrochimica Acta, 2015, 156, 38-44.	2.6	42
276	Application of sulfur-doped carbon coating on the surface of Li ₃ V ₂ (PO ₄) ₃ composites to facilitate Li-ion storage as cathode materials. Journal of Materials Chemistry A, 2015, 3, 6064-6072.	5.2	54
277	Hierarchical Porous Carbon Materials with High Capacitance Derived from Schiff-Base Networks. ACS Applied Materials & Interfaces, 2015, 7, 5811-5819.	4.0	108
278	A scalable hybrid separator for a high performance lithium–sulfur battery. Chemical Communications, 2015, 51, 6996-6999.	2.2	50
279	A high performance lithium-ion sulfur battery based on a Li ₂ S cathode using a dual-phase electrolyte. Energy and Environmental Science, 2015, 8, 1551-1558.	15.6	230
280	Improved electrochemical performance of the Na ₃ V ₂ (PO ₄) ₃ cathode by B-doping of the carbon coating layer for sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 15190-15201.	5.2	117
281	Aqueous Lithium-Ion Batteries Using O ₂ Self-Elimination Polyimides Electrodes. Journal of the Electrochemical Society, 2015, 162, A1972-A1977.	1.3	35
282	Endoplasmic Reticulum Stress-Mediated Apoptotic Pathway Is Involved in Corpus Luteum Regression in Rats. Reproductive Sciences, 2015, 22, 572-584.	1.1	39
283	Preparation of lithium-rich layered oxide micro-spheres using a slurry spray-drying process. Journal of Power Sources, 2015, 287, 370-376.	4.0	17
284	Impact of hydrostatic pressure on the crystal structure and photoluminescence properties of Mn ⁴⁺ -doped BaTiF ₆ red phosphor. Dalton Transactions, 2015, 44, 7578-7585.	1.6	43
285	An additional discharge plateau of Mn3+ in LiFe0.5Mn0.5PO4 at high current rates. Electrochemistry Communications, 2015, 55, 6-9.	2.3	38
286	Hydrothermal synthesis and electrochemical performance of nanoparticle Li2FeSiO4/C cathode materials for lithium ion batteries. Electrochimica Acta, 2015, 167, 340-347.	2.6	14
287	Pressure-Induced Phase Transformation, Reversible Amorphization, and Anomalous Visible Light Response in Organolead Bromide Perovskite. Journal of the American Chemical Society, 2015, 137, 11144-11149.	6.6	303
288	A core–shell-structured TiO ₂ (B) nanofiber@porous RuO ₂ composite as a carbon-free catalytic cathode for Li–O ₂ batteries. Journal of Materials Chemistry A, 2015, 3, 21123-21132.	5.2	31

#	Article	IF	CITATIONS
289	Synthesis of ruthenium oxide coated ordered mesoporous carbon nanofiber arrays as a catalyst for lithium oxygen battery. Journal of Power Sources, 2015, 276, 181-188.	4.0	66
290	Nitrogenâ€Dopingâ€Induced Defects of a Carbon Coating Layer Facilitate Naâ€Storage in Electrode Materials. Advanced Energy Materials, 2015, 5, 1400982.	10.2	321
291	A lithium air battery with a lithiated Al–carbon anode. Chemical Communications, 2015, 51, 676-678.	2.2	72
292	Note: Loading method of molecular fluorine using x-ray induced chemistry. Review of Scientific Instruments, 2014, 85, 086110.	0.6	10
293	Rücktitelbild: Elastic and Wearable Wire-Shaped Lithium-Ion Battery with High Electrochemical Performance (Angew. Chem. 30/2014). Angewandte Chemie, 2014, 126, 8092-8092.	1.6	1
294	Graphite Intercalation Compounds (GICs): A New Type of Promising Anode Material for Lithiumâ€ l on Batteries. Advanced Energy Materials, 2014, 4, 1300600.	10.2	78
295	Facile hydrothermal synthesis of hierarchical ultrathin mesoporous NiMoO4 nanosheets for high performance supercapacitors. Electrochimica Acta, 2014, 115, 358-363.	2.6	110
296	Metal–Organic Frameworks as Cathode Materials for Li–O ₂ Batteries. Advanced Materials, 2014, 26, 3258-3262.	11.1	278
297	Nitrogenâ€Doped Ordered Mesoporous Carbon with a High Surface Area, Synthesized through Organic–Inorganic Coassembly, and Its Application in Supercapacitors. ChemPhysChem, 2014, 15, 2084-2093.	1.0	56
298	Construction of unique NiCo2O4 nanowire@CoMoO4 nanoplate core/shell arrays on Ni foam for high areal capacitance supercapacitors. Journal of Materials Chemistry A, 2014, 2, 4954.	5.2	134
299	Polyimide as anode electrode material for rechargeable sodium batteries. RSC Advances, 2014, 4, 25369-25373.	1.7	102
300	Bâ€doped Carbon Coating Improves the Electrochemical Performance of Electrode Materials for Liâ€ion Batteries. Advanced Functional Materials, 2014, 24, 5511-5521.	7.8	165
301	A Nitrogen-doped Hierarchical Mesoporous/Microporous Carbon for Supercapacitors. Electrochimica Acta, 2014, 146, 485-494.	2.6	31
302	Morphology controlled synthesis of NiCo 2 O 4 nanosheet array nanostructures on nickel foam and their application for pseudocapacitors. Electrochimica Acta, 2014, 142, 118-124.	2.6	88
303	Graphene oxide assisted solvothermal synthesis of LiMnPO 4 naonplates cathode materials for lithium ion batteries. Electrochimica Acta, 2014, 146, 8-14.	2.6	38
304	Three-Dimensional Co ₃ O ₄ @NiMoO ₄ Core/Shell Nanowire Arrays on Ni Foam for Electrochemical Energy Storage. ACS Applied Materials & Interfaces, 2014, 6, 5050-5055.	4.0	198
305	Humidity effect on electrochemical performance of Li–O2 batteries. Journal of Power Sources, 2014, 264, 1-7.	4.0	117
306	Elastic and Wearable Wireâ€Shaped Lithiumâ€Ion Battery with High Electrochemical Performance. Angewandte Chemie - International Edition, 2014, 53, 7864-7869.	7.2	306

#	Article	IF	CITATIONS
307	Twisted Aligned Carbon Nanotube/Silicon Composite Fiber Anode for Flexible Wireâ€Shaped Lithiumâ€Ion Battery. Advanced Materials, 2014, 26, 1217-1222.	11.1	297
308	Flexible and Wireâ€Shaped Microâ€Supercapacitor Based on Ni(OH) ₂ â€Nanowire and Ordered Mesoporous Carbon Electrodes. Advanced Functional Materials, 2014, 24, 3405-3412.	7.8	304
309	Interconnected sandwich structure carbon/Si-SiO2/carbon nanospheres composite as high performance anode material for lithium-ion batteries. Journal of Energy Chemistry, 2014, 23, 315-323.	7.1	27
310	Re-building Daniell Cell with a Li-ion exchange Film. Scientific Reports, 2014, 4, 6916.	1.6	35
311	Ordered Hierarchical Mesoporous/Macroporous Carbon: A Highâ€Performance Catalyst for Rechargeable Li–O ₂ Batteries. Advanced Materials, 2013, 25, 5668-5672.	11.1	297
312	Leafâ€like Graphene Oxide with a Carbon Nanotube Midrib and Its Application in Energy Storage Devices. Advanced Functional Materials, 2013, 23, 4840-4846.	7.8	11
313	Novel Electric Double‣ayer Capacitor with a Coaxial Fiber Structure. Advanced Materials, 2013, 25, 6436-6441.	11.1	346
314	Electrochemical profile of lithium titanate/hard carbon composite as anode material for Li-ion batteries. Journal of Electroanalytical Chemistry, 2013, 688, 86-92.	1.9	20
315	Si/graphene composite prepared by magnesium thermal reduction of SiO2 as anode material for lithium-ion batteries. Electrochemistry Communications, 2013, 36, 107-110.	2.3	43
316	High-voltage aqueous battery approaching 3 V using an acidic–alkaline double electrolyte. Chemical Communications, 2013, 49, 2204.	2.2	67
317	Preparation of nitrogen-containing mesoporous carbons and their application in supercapacitors. New Journal of Chemistry, 2013, 37, 1768.	1.4	31
318	High Performance Hybrid Supercapacitor Based on Graphene-Supported Ni(OH) ₂ -Nanowires and Ordered Mesoporous Carbon CMK-5. Journal of the Electrochemical Society, 2013, 160, A98-A104.	1.3	67
319	TiO2(B) nanofiber bundles as a high performance anode for a Li-ion battery. RSC Advances, 2013, 3, 3352.	1.7	40
320	Pseudo-capacitive profile vs. Li-intercalation in Nano-LiFePO4. Journal of Power Sources, 2013, 236, 230-237.	4.0	21
321	Electrochemical performance comparison of LiFePO4 supported by various carbon materials. Electrochimica Acta, 2013, 88, 632-638.	2.6	78
322	Ordered hierarchical mesoporous/microporous carbon with optimized pore structure for supercapacitors. Journal of Materials Chemistry A, 2013, 1, 1192-1200.	5.2	67
323	Batteries: Twisting Carbon Nanotube Fibers for Both Wire-Shaped Micro-Supercapacitor and Micro-Battery (Adv. Mater. 8/2013). Advanced Materials, 2013, 25, 1224-1224.	11.1	10
324	Twisting Carbon Nanotube Fibers for Both Wireâ€Shaped Microâ€Supercapacitor and Microâ€Battery. Advanced Materials, 2013, 25, 1155-1159.	11.1	712

#	Article	IF	CITATIONS
325	Graphite-anchored lithium vanadium oxide as anode of lithium ion battery. Electrochimica Acta, 2013, 106, 534-540.	2.6	14
326	An agent for change. Nature Chemistry, 2013, 5, 445-447.	6.6	51
327	A nitrogen-doped ordered mesoporous carbon nanofiber array for supercapacitors. Journal of Materials Chemistry A, 2013, 1, 8488.	5.2	128
328	Recent Progress in Supercapacitors: From Materials Design to System Construction. Advanced Materials, 2013, 25, 5336-5342.	11.1	559
329	A Thinâ€Film Direct Hydrogen Peroxide/Borohydride Micro Fuel Cell. Advanced Energy Materials, 2013, 3, 713-717.	10.2	19
330	Binary Li ₄ Ti ₅ O ₁₂ â€Li ₂ Ti ₃ O ₇ Nanocomposite as an Anode Material for Liâ€Ion Batteries. Advanced Functional Materials, 2013, 23, 640-647.	7.8	83
331	Capacitors: Novel Electric Doubleâ€Layer Capacitor with a Coaxial Fiber Structure (Adv. Mater. 44/2013). Advanced Materials, 2013, 25, 6468-6468.	11.1	1
332	A reduced graphene oxide/Cu6Sn5 nanocomposite with enhanced cycling stability for lithium storage. Nanotechnology, 2013, 24, 424010.	1.3	4
333	High performance Li–O2 battery using γ-MnOOH nanorods as a catalyst in an ionic-liquid based electrolyte. Electrochemistry Communications, 2012, 25, 26-29.	2.3	33
334	Layered H ₂ Ti ₆ O ₁₃ â€Nanowires: A New Promising Pseudocapacitive Material in Nonâ€Aqueous Electrolyte. Advanced Functional Materials, 2012, 22, 5185-5193.	7.8	213
335	Ti-based compounds as anode materials for Li-ion batteries. Energy and Environmental Science, 2012, 5, 6652.	15.6	775
336	Ordered mesoporous/microporous carbon sphere arrays derived from chlorination of mesoporous TiC/C composite and their application for supercapacitors. Journal of Materials Chemistry, 2012, 22, 1937-1943.	6.7	47
337	Recent Progress in Aqueous Lithiumâ€ion Batteries. Advanced Energy Materials, 2012, 2, 830-840.	10.2	486
338	Pitch modified hard carbons as negative materials for lithium-ion batteries. Electrochimica Acta, 2012, 74, 1-7.	2.6	63
339	A lithium–air capacitor–battery based on a hybrid electrolyte. Energy and Environmental Science, 2011, 4, 4994.	15.6	88
340	Single-crystal H ₂ V ₃ O ₈ nanowires: a competitive anode with large capacity for aqueous lithium-ion batteries. Journal of Materials Chemistry, 2011, 21, 1780-1787.	6.7	100
341	Titanium nitride catalyst cathode in a Li–air fuel cell with an acidic aqueous solution. Chemical Communications, 2011, 47, 10701.	2.2	70
342	High-surface vanadium oxides with large capacities for lithium-ion batteries: from hydrated aerogel to nanocrystalline VO2(B), V6O13 and V2O5. Journal of Materials Chemistry, 2011, 21, 10999.	6.7	166

#	Article	IF	CITATIONS
343	Carbon-coated nano-sized Li4Ti5O12 nanoporous micro-sphere as anode material for high-rate lithium-ion batteries. Energy and Environmental Science, 2011, 4, 4016.	15.6	366
344	Olivine LiFePO ₄ : development and future. Energy and Environmental Science, 2011, 4, 805-817.	15.6	314
345	To draw an air electrode of a Li–air battery by pencil. Energy and Environmental Science, 2011, 4, 1704.	15.6	143
346	A Li–Liquid Cathode Battery Based on a Hybrid Electrolyte. ChemSusChem, 2011, 4, 1087-1090.	3.6	76
347	A large capacity of LiV3O8 cathode material for rechargeable lithium-based batteries. Electrochimica Acta, 2011, 56, 1392-1398.	2.6	47
348	The effect of alkalinity and temperature on the performance of lithium-air fuel cell with hybrid electrolytes. Journal of Power Sources, 2011, 196, 5611-5616.	4.0	63
349	Flowerlike Vanadium Sesquioxide: Solvothermal Preparation and Electrochemical Properties. ChemPhysChem, 2010, 11, 3273-3280.	1.0	37
350	Controllable Hydrogen Generation from Water. ChemSusChem, 2010, 3, 571-574.	3.6	22
351	The Development of a New Type of Rechargeable Batteries Based on Hybrid Electrolytes. ChemSusChem, 2010, 3, 1009-1019.	3.6	88
352	A lithium-air battery with a potential to continuously reduce O2 from air for delivering energy. Journal of Power Sources, 2010, 195, 358-361.	4.0	274
353	A Li-air fuel cell with recycle aqueous electrolyte for improved stability. Electrochemistry Communications, 2010, 12, 1686-1689.	2.3	106
354	Nano active materials for lithium-ion batteries. Nanoscale, 2010, 2, 1294.	2.8	492
355	A novel direct borohydride fuel cell using an acid–alkaline hybrid electrolyte. Energy and Environmental Science, 2010, 3, 1515.	15.6	25
356	Synthesis of Triaxial LiFePO ₄ Nanowire with a VGCF Core Column and a Carbon Shell through the Electrospinning Method. ACS Applied Materials & Interfaces, 2010, 2, 212-218.	4.0	121
357	A lithium–air fuel cell using copper to catalyze oxygen-reduction based on copper-corrosion mechanism. Chemical Communications, 2010, 46, 6305.	2.2	67
358	A novel rechargeable Li–AgO battery with hybrid electrolytes. Chemical Communications, 2010, 46, 2055.	2.2	22
359	Carbon nanocages with nanographene shell for high-rate lithium ion batteries. Journal of Materials Chemistry, 2010, 20, 9748.	6.7	60
360	Synthesis and electrochemical properties of single-crystalline LiV3O8 nanorods as cathode materials for rechargeable lithium batteries. Journal of Power Sources, 2009, 192, 668-673.	4.0	110

#	Article	IF	CITATIONS
361	A new type rechargeable lithium battery based on a Cu-cathode. Electrochemistry Communications, 2009, 11, 1834-1837.	2.3	35
362	Mesoporous Carbon Nanofibers for Supercapacitor Application. Journal of Physical Chemistry C, 2009, 113, 1093-1097.	1.5	196
363	Design and synthesis of a novel nanothorn VO2(B) hollow microsphere and their application in lithium-ion batteries. Journal of Materials Chemistry, 2009, 19, 2835.	6.7	125
364	Rechargeable Ni-Li Battery Integrated Aqueous/Nonaqueous System. Journal of the American Chemical Society, 2009, 131, 15098-15099.	6.6	105
365	Synthesis and electrochemical performance of nano-sized Li4Ti5O12 with double surface modification of Ti(III) and carbon. Journal of Materials Chemistry, 2009, 19, 6789.	6.7	248
366	Facile synthesis of NaV6O15 nanorods and its electrochemical behavior as cathode material in rechargeable lithium batteries. Journal of Materials Chemistry, 2009, 19, 7885.	6.7	136
367	A competitive candidate material for aqueous supercapacitors: High surface-area graphite. Journal of Power Sources, 2008, 185, 1557-1562.	4.0	101
368	The Design of a LiFePO ₄ /Carbon Nanocomposite With a Core–Shell Structure and Its Synthesis by an Inâ€Situ Polymerization Restriction Method. Angewandte Chemie - International Edition, 2008, 47, 7461-7465.	7.2	816
369	A Polyanilineâ€Intercalated Layered Manganese Oxide Nanocomposite Prepared by an Inorganic/Organic Interface Reaction and Its High Electrochemical Performance for Li Storage. Advanced Materials, 2008, 20, 2166-2170.	11.1	117
370	Hemoglobin immobilized on whisker-like carbon composites and its direct electrochemistry. Electrochimica Acta, 2008, 53, 4748-4753.	2.6	19
371	Lithium-Ion Intercalation Behavior of LiFePO[sub 4] in Aqueous and Nonaqueous Electrolyte Solutions. Journal of the Electrochemical Society, 2008, 155, A144.	1.3	83
372	Hybrid Aqueous Energy Storage Cells Using Activated Carbon and Lithium-Ion Intercalated Compounds. Journal of the Electrochemical Society, 2007, 154, A228.	1.3	58
373	Ordered Mesoporous Spinel LiMn ₂ O ₄ by a Soft-Chemical Process as a Cathode Material for Lithium-Ion Batteries. Chemistry of Materials, 2007, 19, 4791-4795.	3.2	194
374	High Electrocatalytic Performance of Mn3O4/Mesoporous Carbon Composite for Oxygen Reduction in Alkaline Solutions. Chemistry of Materials, 2007, 19, 2095-2101.	3.2	130
375	Interfacial synthesis of porous MnO2 and its application in electrochemical capacitor. Electrochimica Acta, 2007, 53, 752-757.	2.6	154
376	Hybrid Aqueous Energy Storage Cells Using Activated Carbon and Lithium-Intercalated Compounds. Journal of the Electrochemical Society, 2006, 153, A450.	1.3	195
377	Hybrid Aqueous Energy Storage Cells Using Activated Carbon and Lithium-Ion Intercalated Compounds. Journal of the Electrochemical Society, 2006, 153, A1425.	1.3	162
378	Electrochemical Capacitance Performance of Hybrid Supercapacitors Based on Ni(OH)[sub 2]â^•Carbon Nanotube Composites and Activated Carbon. Journal of the Electrochemical Society, 2006, 153, A743.	1.3	109

#	Article	IF	CITATIONS
379	Electrochemical capacitance characterization of NiO with ordered mesoporous structure synthesized by template SBA-15. Electrochimica Acta, 2006, 51, 3223-3227.	2.6	280
380	A direct borohydride fuel cell using MnO2-catalyzed cathode and hydrogen storage alloy anode. Electrochemistry Communications, 2006, 8, 1775-1778.	2.3	64
381	Electrochemical profile of nano-particle CoAl double hydroxide/active carbon supercapacitor using KOH electrolyte solution. Journal of Power Sources, 2006, 153, 191-196.	4.0	107
382	Ordered Whiskerlike Polyaniline Grown on the Surface of Mesoporous Carbon and Its Electrochemical Capacitance Performance. Advanced Materials, 2006, 18, 2619-2623.	11.1	1,033
383	A new concept hybrid electrochemical surpercapacitor: Carbon/LiMn2O4 aqueous system. Electrochemistry Communications, 2005, 7, 1138-1142.	2.3	305
384	Electrochemical reduction of CO2 on RuO2/TiO2 nanotubes composite modified Pt electrode. Electrochimica Acta, 2005, 50, 3576-3580.	2.6	191
385	An asymmetric supercapacitor using RuO2/TiO2 nanotube composite and activated carbon electrodes. Electrochimica Acta, 2005, 50, 5641-5646.	2.6	275
386	Bonding Polyether onto ZnO Nanoparticles: An Effective Method for Preparing Polymer Nanocomposites with Tunable Luminescence and Stable Conductivity. Advanced Functional Materials, 2005, 15, 1751-1756.	7.8	129
387	Enhanced Electrochemical Capacitance of NiO Loaded on TiO[sub 2] Nanotubes. Journal of the Electrochemical Society, 2005, 152, A671.	1.3	56
388	Preparation and electrochemical capacitance of RuO2/TiO2 nanotubes composites. Electrochimica Acta, 2004, 49, 1957-1962.	2.6	168
389	All solid-state supercapacitor with phosphotungstic acid as the proton-conducting electrolyte. Solid State Ionics, 2004, 166, 61-67.	1.3	39
390	A new air electrode based on carbon nanotubes and Ag–MnO2 for metal air electrochemical cells. Carbon, 2004, 42, 3097-3102.	5.4	54
391	VPO4F Fluorophosphates Polyanion Cathodes forÂHighâ€Voltage Proton Storage. Angewandte Chemie, 0, , .	1.6	Ο
392	Facilitating Low-Temperature Li ⁺ Storage via a Riemannian Surface. ACS Central Science, 0,	5.3	0