Roger Vila

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3567293/publications.pdf

Version: 2024-02-01

		87888	98798
122	5,458	38	67
papers	citations	h-index	g-index
137	137	137	5468
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Phylogeny of the Ants: Diversification in the Age of Angiosperms. Science, 2006, 312, 101-104.	12.6	684
2	Factors affecting species delimitations with the <scp>GMYC</scp> model: insights from a butterfly survey. Methods in Ecology and Evolution, 2013, 4, 1101-1110.	5.2	271
3	A Comprehensive and Dated Phylogenomic Analysis of Butterflies. Current Biology, 2018, 28, 770-778.e5.	3.9	249
4	Synergistic effects of combining morphological and molecular data in resolving the phylogeny of butterflies and skippers. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 1577-1586.	2.6	228
5	The evolution of alternative parasitic life histories in large blue butterflies. Nature, 2004, 432, 386-390.	27.8	163
6	Species-Level Para- and Polyphyly in DNA Barcode Gene Trees: Strong Operational Bias in European Lepidoptera. Systematic Biology, 2016, 65, 1024-1040.	5.6	160
7	Molecular phylogeny and systematics of the Pieridae (Lepidoptera: Papilionoidea): higher classification and biogeography. Zoological Journal of the Linnean Society, 2006, 147, 239-275.	2.3	138
8	Complete DNA barcode reference library for a country's butterfly fauna reveals high performance for temperate Europe. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 347-355.	2.6	135
9	Unexpected layers of cryptic diversity in wood white Leptidea butterflies. Nature Communications, 2011, 2, 324.	12.8	131
10	DNA barcode reference library for Iberian butterflies enables a continental-scale preview of potential cryptic diversity. Scientific Reports, 2015, 5, 12395.	3.3	110
11	Phylogeny and palaeoecology of <i>Polyommatus</i> blue butterflies show Beringia was a climate-regulated gateway to the New World. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 2737-2744.	2.6	98
12	Rapid Increase in Genome Size as a Consequence of Transposable Element Hyperactivity in Wood-White (Leptidea) Butterflies. Genome Biology and Evolution, 2017, 9, 2491-2505.	2.5	94
13	An updated checklist of the European Butterflies (Lepidoptera, Papilionoidea). ZooKeys, 2018, 811, 9-45.	1.1	90
14	What is the phylogenetic signal limit from mitogenomes? The reconciliation between mitochondrial and nuclear data in the Insecta class phylogeny. BMC Evolutionary Biology, 2011, 11, 315.	3.2	87
15	Establishing criteria for higherâ&evel classification using molecular data: the systematics of <i>Polyommatus</i> blue butterflies (Lepidoptera, Lycaenidae). Cladistics, 2013, 29, 166-192.	3.3	84
16	In the shadow of phylogenetic uncertainty: The recent diversification of Lysandra butterflies through chromosomal change. Molecular Phylogenetics and Evolution, 2013, 69, 469-478.	2.7	81
17	The determinants of genetic diversity in butterflies. Nature Communications, 2019, 10, 3466.	12.8	80
18	A mirage of cryptic species: Genomics uncover striking mitonuclear discordance in the butterfly <i>Thymelicus sylvestris</i> . Molecular Ecology, 2019, 28, 3857-3868.	3.9	75

#	Article	IF	CITATIONS
19	Unprecedented within-species chromosome number cline in the Wood White butterfly Leptidea sinapis and its significance for karyotype evolution and speciation. BMC Evolutionary Biology, 2011, 11, 109.	3.2	74
20	Ancient Neotropical origin and recent recolonisation: Phylogeny, biogeography and diversification of the Riodinidae (Lepidoptera: Papilionoidea). Molecular Phylogenetics and Evolution, 2015, 93, 296-306.	2.7	72
21	recluster: an unbiased clustering procedure for betaâ€diversity turnover. Ecography, 2013, 36, 1070-1075.	4.5	71
22	Global invasion history of the agricultural pest butterfly <i>Pieris rapae</i> revealed with genomics and citizen science. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20015-20024.	7.1	70
23	Integrating three comprehensive data sets shows that mitochondrial DNA variation is linked to species traits and paleogeographic events in European butterflies. Molecular Ecology Resources, 2019, 19, 1623-1636.	4.8	66
24	Induction of Secondary Structure in a COOH-terminal Peptide of Histone H1 by Interaction with the DNA. Journal of Biological Chemistry, 2001, 276, 30898-30903.	3.4	63
25	Why Do Cryptic Species Tend Not to Co-Occur? A Case Study on Two Cryptic Pairs of Butterflies. PLoS ONE, 2015, 10, e0117802.	2.5	63
26	A combined geneticâ€morphometric analysis unravels the complex biogeographical history of <i>Polyommatus icarus</i> and <i>Polyommatus celina</i> Common Blue butterflies. Molecular Ecology, 2011, 20, 3921-3935.	3.9	62
27	Cryptic matters: overlooked species generate most butterfly betaâ€diversity. Ecography, 2015, 38, 405-409.	4.5	62
28	Versatility of multivalent orientation, inverted meiosis, and rescued fitness in holocentric chromosomal hybrids. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9610-E9619.	7.1	62
29	Reproductive isolation and patterns of genetic differentiation in a cryptic butterfly species complex. Journal of Evolutionary Biology, 2013, 26, 2095-2106.	1.7	60
30	DNA-induced α-Helical Structure in the NH2-terminal Domain of Histone H1. Journal of Biological Chemistry, 2001, 276, 46429-46435.	3.4	57
31	High resolution DNA barcode library for European butterflies reveals continental patterns of mitochondrial genetic diversity. Communications Biology, 2021, 4, 315.	4.4	57
32	The uneven phylogeny and biogeography of Erodium (Geraniaceae): radiations in the Mediterranean and recent recurrent intercontinental colonization. Annals of Botany, 2010, 106, 871-884.	2.9	55
33	Long-distance autumn migration across the Sahara by painted lady butterflies: exploiting resource pulses in the tropical savannah. Biology Letters, 2016, 12, 20160561.	2.3	54
34	Pollen metabarcoding as a tool for tracking longâ€distance insect migrations. Molecular Ecology Resources, 2019, 19, 149-162.	4.8	52
35	Dynamic karyotype evolution and unique sex determination systems in Leptidea wood white butterflies. BMC Evolutionary Biology, 2015, 15, 89.	3.2	51
36	Biogeography of western Mediterranean butterflies: combining turnover and nestedness components of faunal dissimilarity. Journal of Biogeography, 2014, 41, 1639-1650.	3.0	45

#	Article	IF	CITATIONS
37	Integrative analyses unveil speciation linked to host plant shift in <i><scp>S</scp>pialia</i> butterflies. Molecular Ecology, 2016, 25, 4267-4284.	3.9	44
38	How common are dot-like distributions? Taxonomical oversplitting in western European Agrodiaetus (Lepidoptera: Lycaenidae) revealed by chromosomal and molecular markers. Biological Journal of the Linnean Society, 2010, 101, 130-154.	1.6	43
39	A unified framework for diversity gradients: the adaptive trait continuum. Global Ecology and Biogeography, 2013, 22, 6-18.	5.8	41
40	A helixâ€turn motif in the Câ€terminal domain of histone H1. Protein Science, 2000, 9, 627-636.	7.6	38
41	The conundrum of species delimitation: a genomic perspective on a mitogenetically super-variable butterfly. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20191311.	2.6	37
42	Rearrangement of the Agrodiaetus dolus species group (Lepidoptera, Lycaenidae) using a new cytological approach and molecular data. Insect Systematics and Evolution, 2006, 37, 325-334.	0.7	36
43	Sequence Complexity of Histone H1 Subtypes. Molecular Biology and Evolution, 2003, 20, 371-380.	8.9	35
44	Evolution of multiple sex-chromosomes associated with dynamic genome reshuffling in Leptidea wood-white butterflies. Heredity, 2020, 125, 138-154.	2.6	35
45	The Pleistocene species pump past its prime: Evidence from European butterfly sister species. Molecular Ecology, 2021, 30, 3575-3589.	3.9	35
46	DNA Barcodes Combined with Multilocus Data of Representative Taxa Can Generate Reliable Higher-Level Phylogenies. Systematic Biology, 2022, 71, 382-395.	5.6	35
47	Round-trip across the Sahara: Afrotropical Painted Lady butterflies recolonize the Mediterranean in early spring. Biology Letters, 2018, 14, 20180274.	2.3	34
48	A phylogenetic revision of the Glaucopsyche section (Lepidoptera: Lycaenidae), with special focus on the Phengaris–Maculinea clade. Molecular Phylogenetics and Evolution, 2011, 61, 237-243.	2.7	33
49	Do Holarctic ant species exist? Transâ€Beringian dispersal and homoplasy in the Formicidae. Journal of Biogeography, 2018, 45, 1917-1928.	3.0	33
50	Conserved ancestral tropical niche but different continental histories explain the latitudinal diversity gradient in brush-footed butterflies. Nature Communications, 2021, 12, 5717.	12.8	33
51	Rise and fall of island butterfly diversity: Understanding genetic differentiation and extinction in a highly diverse archipelago. Diversity and Distributions, 2017, 23, 1169-1181.	4.1	32
52	Lack of gene flow: Narrow and dispersed differentiation islands in a triplet of <i>Leptidea</i> butterfly species. Molecular Ecology, 2019, 28, 3756-3770.	3.9	31
53	Historical and contemporary factors generate unique butterfly communities on islands. Scientific Reports, 2016, 6, 28828.	3.3	29
54	How long is 3Âkm for a butterfly? Ecological constraints and functional traits explain high mitochondrial genetic diversity between Sicily and the Italian Peninsula. Journal of Animal Ecology, 2020, 89, 2013-2026.	2.8	29

#	Article	IF	Citations
55	An inducible helix-Gly-Gly-helix motif in the N-terminal domain of histone H1e: A CD and NMR study. Protein Science, 2009, $11,214-220$.	7.6	28
56	Two ways to be endemic. Alps and Apennines are different functional refugia during climatic cycles. Molecular Ecology, 2021, 30, 1297-1310.	3.9	27
57	Phylogeny and historical biogeography of the subtribe Aporiina (Lepidoptera: Pieridae): implications for the origin of Australian butterflies. Biological Journal of the Linnean Society, 2007, 90, 413-440.	1.6	26
58	Use of genetic, climatic, and microbiological data to inform reintroduction of a regionally extinct butterfly. Conservation Biology, 2018, 32, 828-837.	4.7	26
59	Two consecutive <i>Wolbachia </i> â€mediated mitochondrial introgressions obscure taxonomy in Palearctic swallowtail butterflies (Lepidoptera, Papilionidae). Zoologica Scripta, 2019, 48, 507-519.	1.7	25
60	Incomplete Sterility of Chromosomal Hybrids: Implications for Karyotype Evolution and Homoploid Hybrid Speciation. Frontiers in Genetics, 2020, 11, 583827.	2.3	24
61	Dispersal, fragmentation, and isolation shape the phylogeography of the European lineages of <i>Polyommatus </i> (<i> Agrodiaetus </i>) <i> ripartii </i> (Lepidoptera: Lycaenidae). Biological Journal of the Linnean Society, 2013, 109, 817-829.	1.6	23
62	Identifying zones of phenetic compression in West Mediterranean butterflies (Satyrinae): refugia, invasion and hybridization. Diversity and Distributions, 2012, 18, 1066-1076.	4.1	21
63	Climatic niche evolution is faster in sympatric than allopatric lineages of the butterfly genus <i>Pyrgus</i> . Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170208.	2.6	21
64	Phenotypic biomarkers of climatic impacts on declining insect populations: A key role for decadal drought, thermal buffering and amplification effects and host plant dynamics. Journal of Animal Ecology, 2019, 88, 376-391.	2.8	21
65	Discovery of mass migration and breeding of the painted lady butterflyVanessa carduiin the Sub-Sahara: the Europe-Africa migration revisited. Biological Journal of the Linnean Society, 2016, , .	1.6	19
66	Phylogenetic island disequilibrium: evidence for ongoing long-term population dynamics in two Mediterranean butterflies. Journal of Biogeography, $2011,38,854-867$.	3.0	18
67	Discovered just before extinction? The first endemic ant from the Balearic Islands (Lasius balearicus) Tj ETQq $1\ 1$	0.784314 3.0	rgBT /Overlo
68	Historical and current patterns of gene flow in the butterfly <i>Pararge aegeria</i> Journal of Biogeography, 2018, 45, 1628-1639.	3.0	18
69	Dissecting the Effects of Selection and Mutation on Genetic Diversity in Three Wood White (Leptidea) Butterfly Species. Genome Biology and Evolution, 2019, 11, 2875-2886.	2.5	18
70	The isolated <i>Erebia pandrose</i> Apennine population is genetically unique and endangered by climate change. Insect Conservation and Diversity, 2022, 15, 136-148.	3.0	18
71	Host plant diet affects growth and induces altered gene expression and microbiome composition in the wood white (Leptidea sinapis) butterfly. Molecular Ecology, 2021, 30, 499-516.	3.9	17
72	Biogeography and systematics of Aricia butterflies (Lepidoptera, Lycaenidae). Molecular Phylogenetics and Evolution, 2013, 66, 369-379.	2.7	16

#	Article	IF	CITATIONS
73	Differentiation in the marbled white butterfly species complex driven by multiple evolutionary forces. Journal of Biogeography, 2017, 44, 433-445.	3.0	16
74	Gene expression profiling across ontogenetic stages in the wood white (<i>Leptidea sinapis</i>) reveals pathways linked to butterfly diapause regulation. Molecular Ecology, 2018, 27, 935-948.	3.9	16
75	Out of the Orient: Postâ€Tethyan transoceanic and transâ€Arabian routes fostered the spread of Baorini skippers in the Afrotropics. Systematic Entomology, 2019, 44, 926-938.	3.9	16
76	Flight over the Proto-Caribbean seaway: Phylogeny and macroevolution of Neotropical Anaeini leafwing butterflies. Molecular Phylogenetics and Evolution, 2019, 137, 86-103.	2.7	14
77	Morphological and chemical analysis of male scent organs in the butterfly genus Pyrgus (Lepidoptera:) Tj ${\sf ETQq1}$	1 0.7843	14 rgBT /Ove
78	DNA Barcoding of an Assembly of Montane Andean Butterflies (Satyrinae): Geographical Scale and Identification Performance. Neotropical Entomology, 2017, 46, 514-523.	1.2	13
79	Genomics of extreme ecological specialists: multiple convergent evolution but no genetic divergence between ecotypes of Maculinea alcon butterflies. Scientific Reports, 2017, 7, 13752.	3.3	13
80	Asymmetric constraints on limits to species ranges influence consumerâ€resource richness over an environmental gradient. Global Ecology and Biogeography, 2016, 25, 1477-1488.	5 . 8	12
81	<i>Erebia epiphron</i> and <i>Erebia orientalis</i> sibling butterfly species with contrasting histories. Biological Journal of the Linnean Society, 2019, 126, 338-348.	1.6	12
82	Integrative analyses on Western Palearctic <i>Lasiommata</i> reveal a mosaic of nascent butterfly species. Journal of Zoological Systematics and Evolutionary Research, 2020, 58, 809-822.	1.4	12
83	Assigning occurrence data to cryptic taxa improves climatic niche assessments: Biodecrypt, a new tool tested on European butterflies. Global Ecology and Biogeography, 2020, 29, 1852-1865.	5.8	11
84	Molecular evidence of hybridization in sympatric populations of the Enantia jethys complex (Lepidoptera: Pieridae). PLoS ONE, 2018, 13, e0197116.	2.5	10
85	Exploitation of the invasive Asian Hornet <i>Vespa velutina</i> by the European Honey Buzzard <i>Pernis apivorus</i> . Bird Study, 2019, 66, 425-429.	1.0	10
86	Bacterial communities within Phengaris (Maculinea) alcon caterpillars are shifted following transition from solitary living to social parasitism of Myrmica ant colonies. Ecology and Evolution, 2019, 9, 4452-4464.	1.9	10
87	Rapid colour shift by reproductive character displacement in Cupido butterflies. Molecular Ecology, 2020, 29, 4942-4955.	3.9	10
88	Integrative biodiversity inventory of ants from a Sicilian archipelago reveals high diversity on young volcanic islands (Hymenoptera: Formicidae). Organisms Diversity and Evolution, 2020, 20, 405-416.	1.6	10
89	Molecular phylogeny and systematics of the Pieridae (Lepidoptera: Papilionoidea): higher classification and biogeography. Zoological Journal of the Linnean Society, 2006, 147, 417-417.	2.3	9
90	Comparing population patterns for genetic and morphological markers with uneven sample sizes. An example for the butterfly <i>Maniola jurtina</i> . Methods in Ecology and Evolution, 2014, 5, 834-843.	5.2	9

#	Article	IF	Citations
91	Ecological specialization is associated with genetic structure in the ant-associated butterfly family Lycaenidae. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20181158.	2.6	9
92	Overlooked cryptic diversity in <i>Muschampia</i> (Lepidoptera: Hesperiidae) adds two species to the European butterfly fauna. Zoological Journal of the Linnean Society, 2021, 193, 847-859.	2.3	9
93	Erratic spatiotemporal vegetation growth anomalies drive population outbreaks in a trans-Saharan insect migrant. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2121249119.	7.1	9
94	Biogeography, ecology and conservation of <i>Erebia oeme</i> (Hýbner) in the Carpathians (Lepidoptera: Nymphalidae: Satyrinae). Annales De La Societe Entomologique De France, 2010, 46, 486-498.	0.9	8
95	The genome sequence of the lesser marbled fritillary, <i>Brenthis ino</i> , and evidence for a segregating neo-Z chromosome. G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	8
96	Integrative taxonomy reveals cryptic diversity in North American Lasius ants, and an overlooked introduced species. Scientific Reports, 2022, 12, 5970.	3.3	8
97	Linking largeâ€scale genetic structure of three Argynnini butterfly species to geography and environment. Molecular Ecology, 2022, 31, 4381-4401.	3.9	7
98	The sibling species Leptidea juvernica and L. sinapis (Lepidoptera, Pieridae) in the Balkan Peninsula: ecology, genetic structure, and morphological variation. Zoology, 2016, 119, 11-20.	1.2	6
99	Hybridization fuelled diversification in <i>Spialia</i> butterflies. Molecular Ecology, 2022, , .	3.9	6
100	Oneâ€note samba: the biogeographical history of the relict Brazilian butterfly Elkalyce cogina. Journal of Biogeography, 2016, 43, 727-737.	3.0	5
101	The first known riodinid â€~cuckoo' butterfly reveals deep-time convergence and parallelism in ant social parasites. Zoological Journal of the Linnean Society, 2021, 193, 860-879.	2.3	5
102	Natural history and immature stage morphology of Spialia Swinhoe, 1912 in the Iberian Peninsula (Lepidoptera, Hesperiidae). Nota Lepidopterologica, 2018, 41, 1-22.	0.6	5
103	Genomics Reveal Admixture and Unexpected Patterns of Diversity in a Parapatric Pair of Butterflies. Genes, 2021, 12, 2009.	2.4	5
104	Molecular substitution rate increases with latitude in butterflies: evidence for a transâ€glacial latitudinal layering of populations?. Ecography, 2017, 40, 930-935.	4.5	4
105	The genome sequence of the small tortoiseshell butterfly, Aglais urticae (Linnaeus, 1758). Wellcome Open Research, 0, 6, 233.	1.8	4
106	The genome sequence of the European peacock butterfly, Aglais io (Linnaeus, 1758). Wellcome Open Research, 0, 6, 258.	1.8	4
107	The worrying arrival of the invasive Asian needle ant Brachyponera chinensis in Europe (Hymenoptera:) Tj ${\sf ETQq1}$	1 0.78431 0.5	14 ₄ gBT /Ove
108	Integrative Taxonomy Reveals a New <i>Melitaea</i> (Lepidoptera: Nymphalidae) Species Widely Distributed in the Iberian Peninsula. Insect Systematics and Diversity, 2022, 6, .	1.7	4

#	Article	IF	CITATIONS
109	Tracing the origin of disjunct distributions: a case of biogeographical convergence in Pyrgus butterflies. Journal of Biogeography, 2011, 38, 2006-2020.	3.0	3
110	The genome sequence of the large tortoiseshell, Nymphalis polychloros (Linnaeus, 1758). Wellcome Open Research, 2021, 6, 238.	1.8	3
111	An updated checklist of the European Butterflies (Lepidoptera, Papilionoidea). ZooKeys, 0, 811, 9-45.	1.1	3
112	Ithomiini Butterflies (Lepidoptera: Nymphalidae) of Antioquia, Colombia. Neotropical Entomology, 2013, 42, 146-157.	1.2	2
113	Genetics and extreme confinement of three overlooked butterfly species in Romania call for immediate conservation actions. Journal of Insect Conservation, 2021, 25, 137-146.	1.4	2
114	The genome sequence of the green-underside blue, Glaucopsyche alexis (Poda, 1761). Wellcome Open Research, 0, 6, 274.	1.8	2
115	The genome sequence of the small white, Pieris rapae (Linnaeus, 1758). Wellcome Open Research, 0, 6, 273.	1.8	2
116	Genetic assessment and climate modelling of the Iberian specialist butterfly <i>Euchloe bazae</i> (Lepidoptera: Pieridae). Insect Conservation and Diversity, 2022, 15, 594-605.	3.0	2
117	Delimiting continuity: Comparison of target enrichment and double digest restrictionâ€site associated DNA sequencing for delineating admixing parapatric ⟨i⟩Melitaea⟨ i⟩ butterflies. Systematic Entomology, 2022, 47, 637-654.	3.9	2
118	The genome sequence of the Glanville fritillary, Melitaea cinxia (Linnaeus, 1758). Wellcome Open Research, 0, 6, 266.	1.8	1
119	The genome sequence of the small copper, Lycaena phlaeas (Linnaeus, 1760). Wellcome Open Research, 0, 6, 294.	1.8	1
120	The genome sequence of the heath fritillary, Melitaea athalia (Rottemburg, 1775). Wellcome Open Research, 2021, 6, 304.	1.8	1
121	The genome sequence of the marbled white butterfly, Melanargia galathea (Linnaeus, 1758). Wellcome Open Research, 0, 7, 123.	1.8	1
122	The genome sequence of the grizzled skipper, Pyrgus malvae (Linnaeus, 1758). Wellcome Open Research, 0, 7, 114.	1.8	0