
Diego Cazorla-Amoros

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/356728/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Formic acid dehydrogenation attained by Pd nanoparticles-based catalysts supported on MWCNT-C3N4 composites. Catalysis Today, 2022, 397-399, 428-435.	4.4	9
2	Controlled synthesis of mono- and bimetallic Pt-based catalysts for electrochemical ethanol oxidation. Materials Chemistry and Physics, 2022, 275, 125282.	4.0	3
3	Electrocatalytic activity of calcined manganese ferrite solid nanospheres in the oxygen reduction reaction. Environmental Research, 2022, 204, 112126.	7.5	2
4	On the deactivation of N-doped carbon materials active sites during oxygen reduction reaction. Carbon, 2022, 189, 548-560.	10.3	23
5	Electrochemical functionalization of carbon nanomaterials and their application in immobilization of enzymes. , 2022, , 67-103.		0
6	Manganese oxides/LaMnO3 perovskite materials and their application in the oxygen reduction reaction. Energy, 2022, 247, 123456.	8.8	27
7	On the mechanism of electrochemical functionalization of carbon nanotubes with different structures with aminophenylphosphonic acid isomers: an experimental and computational approach. Journal of Materials Chemistry A, 2022, 10, 7271-7290.	10.3	4
8	Efficient production of hydrogen from a valuable CO2-derived molecule: Formic acid dehydrogenation boosted by biomass waste-derived catalysts. Fuel, 2022, 320, 123900.	6.4	7
9	Efficient and cost-effective ORR electrocatalysts based on low content transition metals highly dispersed on C3N4/super-activated carbon composites. Carbon, 2022, 196, 378-390.	10.3	19
10	Easy enrichment of graphitic nitrogen to prepare highly catalytic carbons for oxygen reduction reaction. Carbon, 2022, , .	10.3	7
11	Electrocatalysis with metal-free carbon-based catalysts. , 2022, , 213-244.		1
12	Electrochemical functionalization at anodic conditions of multi-walled carbon nanotubes with chlorodiphenylphosphine. Journal of Colloid and Interface Science, 2022, 623, 915-926.	9.4	2
13	P-functionalized carbon nanotubes promote highly stable electrocatalysts based on Fe-phthalocyanines for oxygen reduction: Experimental and computational studies. Journal of Energy Chemistry, 2022, 72, 276-290.	12.9	11
14	Transition metal oxides with perovskite and spinel structures for electrochemical energy production applications. Environmental Research, 2022, 214, 113731.	7.5	21
15	Metal free electrochemical glucose biosensor based on N-doped porous carbon material. Electrochimica Acta, 2021, 367, 137434.	5.2	25
16	Study of MWCNT Dispersion Effect in TiO2-MWCNT Composites for Gas-Phase Propene Photooxidation. Materials Research Bulletin, 2021, 134, 111089.	5.2	4
17	Electrochemical regeneration of spent activated carbon from drinking water treatment plant at different scale reactors. Chemosphere, 2021, 264, 128399.	8.2	23
18	Electrochemical performance of Nâ€doped superporous activated carbons in ionic liquidâ€based electrolytes. Electrochimica Acta, 2021, 368, 137590.	5.2	5

#	Article	IF	CITATIONS
19	Biomass waste conversion into low-cost carbon-based materials for supercapacitors: A sustainable approach for the energy scenario. Journal of Electroanalytical Chemistry, 2021, 880, 114899.	3.8	39
20	Electroadsorption of Bromide from Natural Water in Granular Activated Carbon. Water (Switzerland), 2021, 13, 598.	2.7	1
21	Photocatalytically-driven H2 production over Cu/TiO2 catalysts decorated with multi-walled carbon nanotubes. Catalysis Today, 2021, 364, 182-189.	4.4	19
22	Preparation of Pt/CNT Thin-Film Electrodes by Electrochemical Potential Pulse Deposition for Methanol Oxidation. Journal of Carbon Research, 2021, 7, 32.	2.7	6
23	Keys and New Trends of Iron-Based Catalysts in Selective Oxidation of Propylene in Gas Phase. Catalytic Science Series, 2021, , 35-56.	0.0	0
24	Copper ferrite nanospheres composites mixed with carbon black to boost the oxygen reduction reaction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 613, 126060.	4.7	9
25	Feasibility of electrochemical regeneration of activated carbon used in drinking water treatment plant. Reactor configuration design at a pilot scale. Chemical Engineering Research and Design, 2021, 148, 846-857.	5.6	12
26	Hydrolytic Dehydrogenation of Ammonia Borane Attained by Ru-Based Catalysts: An Auspicious Option to Produce Hydrogen from a Solid Hydrogen Carrier Molecule. Energies, 2021, 14, 2199.	3.1	10
27	Single atomic Co coordinated with N in microporous carbon for oxygen reduction reaction obtained from Co/2-methylimidazole anchored to Y zeolite as a template. Materials Today Chemistry, 2021, 20, 100410.	3.5	2
28	Comparative analysis of water condensate porosity using mercury intrusion porosimetry and nitrogen and water adsorption techniques in porous building stones. Construction and Building Materials, 2021, 288, 123131.	7.2	16
29	Multiâ€wall carbon nanotubes electrochemically modified with phosphorus and nitrogen functionalities as a basis for bioelectrodes with improved performance. Electrochimica Acta, 2021, 387, 138530.	5.2	7
30	Pyrroloquinoline quinone-dependent glucose dehydrogenase bioelectrodes based on one-step electrochemical entrapment over single-wall carbon nanotubes. Talanta, 2021, 232, 122386.	5.5	8
31	Preparation of mesoporous Î ³ -Al2O3 with high surface area from an AlOOH extract of recycling biomass ash. Journal of Environmental Chemical Engineering, 2021, 9, 105925.	6.7	10
32	Pd-Core-Based Core–Shell Nanoparticles for Catalytic and Electrocatalytic Applications. Nanostructure Science and Technology, 2021, , 343-364.	0.1	0
33	H2 Production from Formic Acid Using Highly Stable Carbon-Supported Pd-Based Catalysts Derived from Soft-Biomass Residues: Effect of Heat Treatment and Functionalization of the Carbon Support. Materials, 2021, 14, 6506.	2.9	2
34	Exploring CuxO-doped TiO2 modified with carbon nanotubes for CO2 photoreduction in a 2D-flow reactor. Journal of CO2 Utilization, 2021, 54, 101796.	6.8	7
35	Nitrogen Doped Superactivated Carbons Prepared at Mild Conditions as Electrodes for Supercapacitors in Organic Electrolyte. Journal of Carbon Research, 2020, 6, 56.	2.7	3
36	On the Origin of the Effect of pH in Oxygen Reduction Reaction for Nondoped and Edge-Type Quaternary N-Doped Metal-Free Carbon-Based Catalysts. ACS Applied Materials & Interfaces, 2020, 12, 54815-54823.	8.0	21

#	Article	IF	CITATIONS
37	Tailoring Intrinsic Properties of Polyaniline by Functionalization with Phosphonic Groups. Polymers, 2020, 12, 2820.	4.5	15
38	Hardwood <i>versus</i> softwood Kraft lignin – precursor-product relationships in the manufacture of porous carbon nanofibers for supercapacitors. Journal of Materials Chemistry A, 2020, 8, 23543-23554.	10.3	28
39	Polyaniline-Derived N-Doped Ordered Mesoporous Carbon Thin Films: Efficient Catalysts towards Oxygen Reduction Reaction. Polymers, 2020, 12, 2382.	4.5	17
40	Highly Stable N-Doped Carbon-Supported Pd-Based Catalysts Prepared from Biomass Waste for H ₂ Production from Formic Acid. ACS Sustainable Chemistry and Engineering, 2020, 8, 15030-15043.	6.7	34
41	Carbon Material and Cobalt-Substitution Effects in the Electrochemical Behavior of LaMnO3 for ORR and OER. Nanomaterials, 2020, 10, 2394.	4.1	18
42	Synthesis of TiO ₂ /Nanozeolite Composites for Highly Efficient Photocatalytic Oxidation of Propene in the Gas Phase. ACS Omega, 2020, 5, 31323-31331.	3.5	16
43	MWCNT-Supported PVP-Capped Pd Nanoparticles as Efficient Catalysts for the Dehydrogenation of Formic Acid. Frontiers in Chemistry, 2020, 8, 359.	3.6	8
44	Effect of surface oxygen groups in the electrochemical modification of multi-walled carbon nanotubes by 4-amino phenyl phosphonic acid. Carbon, 2020, 165, 328-339.	10.3	15
45	Zn-Promoted Selective Gas-Phase Hydrogenation of Tertiary and Secondary C4 Alkynols over Supported Pd. ACS Applied Materials & Interfaces, 2020, 12, 28158-28168.	8.0	26
46	Synthesis of Phosphorus-Containing Polyanilines by Electrochemical Copolymerization. Polymers, 2020, 12, 1029.	4.5	9
47	Development of mesoporous materials from biomass ash with future applications as adsorbent materials. Microporous and Mesoporous Materials, 2020, 299, 110085.	4.4	10
48	Electrochemical functionalization of single wall carbon nanotubes with phosphorus and nitrogen species. Electrochimica Acta, 2020, 340, 135935.	5.2	17
49	Activation of electrospun lignin-based carbon fibers and their performance as self-standing supercapacitor electrodes. Separation and Purification Technology, 2020, 241, 116724.	7.9	67
50	Rational Design of Single Atomic Co in CoN x Moieties on Graphene Matrix as an Ultraâ€Highly Efficient Active Site for Oxygen Reduction Reaction. ChemNanoMat, 2020, 6, 218-222.	2.8	3
51	Metal-free heteroatom-doped carbon-based catalysts for ORR: A critical assessment about the role of heteroatoms. Carbon, 2020, 165, 434-454.	10.3	231
52	Effect of carbon surface on degradation of supercapacitors in a negative potential range. Journal of Power Sources, 2020, 457, 228042.	7.8	26
53	Novelty without nobility: Outstanding Ni/Ti-SiO2 catalysts for propylene epoxidation. Journal of Catalysis, 2020, 386, 94-105.	6.2	6
54	Nitrogen-Doped Seamless Activated Carbon Electrode with Excellent Durability for Electric Double Layer Capacitor. Journal of the Electrochemical Society, 2020, 167, 060523.	2.9	17

#	Article	IF	CITATIONS
55	Post-synthetic efficient functionalization of polyaniline with phosphorus-containing groups. Effect of phosphorus on electrochemical properties. European Polymer Journal, 2019, 119, 272-280.	5.4	21
56	Are the Accompanying Cations of Doping Anions Influential in Conducting Organic Polymers? The Case of the Popular PEDOT. Chemistry - A European Journal, 2019, 25, 14308-14319.	3.3	6
57	Efficient Production of Multi-Layer Graphene from Graphite Flakes in Water by Lipase-Graphene Sheets Conjugation. Nanomaterials, 2019, 9, 1344.	4.1	5
58	Hydrogen Production from Formic Acid Attained by Bimetallic Heterogeneous PdAg Catalytic Systems. Energies, 2019, 12, 4027.	3.1	26
59	Structural and morphological alterations induced by cobalt substitution in LaMnO3 perovskites. Journal of Colloid and Interface Science, 2019, 556, 658-666.	9.4	33
60	Photo-microfluidic chip reactors for propene complete oxidation with TiO2 photocalyst using UV-LED light. Journal of Environmental Chemical Engineering, 2019, 7, 103408.	6.7	8
61	Anchoring a Co/2-methylimidazole complex on ion-exchange resin and its transformation to Co/N-doped carbon as an electrocatalyst for the ORR. Catalysis Science and Technology, 2019, 9, 578-582.	4.1	12
62	Free-standing supercapacitors from Kraft lignin nanofibers with remarkable volumetric energy density. Chemical Science, 2019, 10, 2980-2988.	7.4	88
63	Strategies to Enhance the Performance of Electrochemical Capacitors Based on Carbon Materials. Frontiers in Materials, 2019, 6, .	2.4	58
64	Multilayer graphene functionalized through thermal 1,3-dipolar cycloadditions with imino esters: a versatile platform for supported ligands in catalysis. Chemical Communications, 2019, 55, 7462-7465.	4.1	10
65	Nitrogen-Doped Superporous Activated Carbons as Electrocatalysts for the Oxygen Reduction Reaction. Materials, 2019, 12, 1346.	2.9	42
66	A Simple "Nano-Templating―Method Using Zeolite Y Toward the Formation of Carbon Schwarzites. Frontiers in Materials, 2019, 6, .	2.4	14
67	Copper-Doped Cobalt Spinel Electrocatalysts Supported on Activated Carbon for Hydrogen Evolution Reaction. Materials, 2019, 12, 1302.	2.9	22
68	Understanding of oxygen reduction reaction by examining carbon-oxygen gasification reaction and carbon active sites onAmetalAand heteroatoms free carbon materials of different porositiesAand structures. Carbon, 2019, 148, 430-440.	10.3	28
69	Carbon Nanotubes Modified With Au for Electrochemical Detection of Prostate Specific Antigen: Effect of Au Nanoparticle Size Distribution. Frontiers in Chemistry, 2019, 7, 147.	3.6	31
70	Insight into the origin of carbon corrosion in positive electrodes of supercapacitors. Journal of Materials Chemistry A, 2019, 7, 7480-7488.	10.3	62
71	Towards understanding the active sites for the ORR in N-doped carbon materials through fine-tuning of nitrogen functionalities: an experimental and computational approach. Journal of Materials Chemistry A, 2019, 7, 24239-24250.	10.3	87
72	Fabrication of Co/P25 coated with thin nitrogen-doped carbon shells (Co/P25/NC) as an efficient electrocatalyst for oxygen reduction reaction (ORR). Electrochimica Acta, 2019, 296, 867-873.	5.2	10

#	Article	IF	CITATIONS
73	From Waste to Wealth: From Kraft Lignin to Free-standing Supercapacitors. Carbon, 2019, 145, 470-480.	10.3	145
74	Modeling of oxygen reduction reaction in porous carbon materials in alkaline medium. Effect of microporosity. Journal of Power Sources, 2019, 412, 451-464.	7.8	56
75	Oxygen-reduction catalysis of N-doped carbons prepared <i>via</i> heat treatment of polyaniline at over 1100 ŰC. Chemical Communications, 2018, 54, 4441-4444.	4.1	50
76	Ultraporous nitrogen-doped zeolite-templated carbon for high power density aqueous-based supercapacitors. Carbon, 2018, 129, 510-519.	10.3	79
77	Hydrogen Storage in Porous Materials: Status, Milestones, and Challenges. Chemical Record, 2018, 18, 900-912.	5.8	62
78	Tailored metallacarboranes as mediators for boosting the stability of carbon-based aqueous supercapacitors. Sustainable Energy and Fuels, 2018, 2, 345-352.	4.9	13
79	Facile encapsulation of P25 (TiO2) in spherical silica with hierarchical porosity with enhanced photocatalytic properties for gas-phase propene oxidation. Applied Catalysis A: General, 2018, 564, 123-132.	4.3	15
80	Ferrosilicate-Based Heterogeneous Fenton Catalysts: Influence of Crystallinity, Porosity, and Iron Speciation. Catalysis Letters, 2018, 148, 3134-3146.	2.6	7
81	Effect of Nitrogen-Functional Groups on the ORR Activity of Activated Carbon Fiber-Polypyrrole-Based Electrodes. Electrocatalysis, 2018, 9, 697-705.	3.0	27
82	Photocatalytic Oxidation of VOCs in Gas Phase Using Capillary Microreactors with Commercial TiO2 (P25) Fillings. Materials, 2018, 11, 1149.	2.9	14
83	New insights into the electrochemical behaviour of porous carbon electrodes for supercapacitors. Journal of Energy Storage, 2018, 19, 337-347.	8.1	42
84	Effect of carbonization conditions of polyaniline on its catalytic activity towards ORR. Some insights about the nature of the active sites. Carbon, 2017, 119, 62-71.	10.3	67
85	Pd and Cu-Pd nanoparticles supported on multiwall carbon nanotubes for H 2 detection. Materials Research Bulletin, 2017, 93, 102-111.	5.2	8
86	Key factors improving oxygen reduction reaction activity in cobalt nanoparticles modified carbon nanotubes. Applied Catalysis B: Environmental, 2017, 217, 303-312.	20.2	58
87	Magnetic zeolites: novel nanoreactors through radiofrequency heating. Chemical Communications, 2017, 53, 4262-4265.	4.1	17
88	Lignin-derived Pt supported carbon (submicron)fiber electrocatalysts for alcohol electro-oxidation. Applied Catalysis B: Environmental, 2017, 211, 18-30.	20.2	75
89	K- and Ca-promoted ferrosilicates for the gas-phase epoxidation of propylene with O 2. Applied Catalysis A: General, 2017, 538, 139-147.	4.3	14
90	Efficient Pt electrocatalysts supported onto flavin mononucleotide–exfoliated pristine graphene for the methanol oxidation reaction. Electrochimica Acta, 2017, 231, 386-395.	5.2	21

#	Article	IF	CITATIONS
91	Relevance of the Interaction between the M-Phthalocyanines and Carbon Nanotubes in the Electroactivity toward ORR. Langmuir, 2017, 33, 11945-11955.	3.5	27
92	A new zeolitic hydroxymethylimidazolate material and its use in mixed matrix membranes based on 6FDA-DAM for gas separation. Journal of Membrane Science, 2017, 544, 88-97.	8.2	11
93	Synthesis of conducting polymer/carbon material composites and their application in electrical energy storage. , 2017, , 173-209.		27
94	Synthesis of TiO2 with Hierarchical Porosity for the Photooxidation of Propene. Molecules, 2017, 22, 2243.	3.8	17
95	Effects of the surface chemistry and structure of carbon nanotubes on the coating of glucose oxidase and electrochemical biosensors performance. RSC Advances, 2017, 7, 26867-26878.	3.6	34
96	Design of Activated Carbon/Activated Carbon Asymmetric Capacitors. Frontiers in Materials, 2016, 3, .	2.4	49
97	Structural and textural features of TiO2/SAPO-34 nanocomposite prepared by the sol–gel method. Research on Chemical Intermediates, 2016, 42, 8039-8053.	2.7	20
98	Nitrogen doped superporous carbon prepared by a mild method. Enhancement of supercapacitor performance. International Journal of Hydrogen Energy, 2016, 41, 19691-19701.	7.1	42
99	Asymmetric capacitors using lignin-based hierarchical porous carbons. Journal of Power Sources, 2016, 326, 641-651.	7.8	64
100	Activated Carbons Prepared through H ₃ PO ₄ â€Assisted Hydrothermal Carbonisation from Biomass Wastes: Porous Texture and Electrochemical Performance. ChemPlusChem, 2016, 81, 1349-1359.	2.8	60
101	Enhanced ammonia-borane decomposition by synergistic catalysis using CoPd nanoparticles supported on titano-silicates. RSC Advances, 2016, 6, 91768-91772.	3.6	13
102	Electrochemical performance of a superporous activated carbon in ionic liquid-based electrolytes. Journal of Power Sources, 2016, 336, 419-426.	7.8	31
103	Gas-Adsorbing Nanoporous Carbons. , 2016, , 465-486.		0
104	Evolution of the PVP–Pd Surface Interaction in Nanoparticles through the Case Study of Formic Acid Decomposition. Langmuir, 2016, 32, 12110-12118.	3.5	61
105	One step-synthesis of highly dispersed iron species into silica for propylene epoxidation with dioxygen. Journal of Catalysis, 2016, 338, 154-167.	6.2	30
106	Silica-templated ordered mesoporous carbon thin films as electrodes for micro-capacitors. Journal of Materials Chemistry A, 2016, 4, 4570-4579.	10.3	48
107	Easy fabrication of superporous zeolite templated carbon electrodes by electrospraying on rigid and flexible substrates. Journal of Materials Chemistry A, 2016, 4, 4610-4618.	10.3	14
108	Successful functionalization of superporous zeolite templated carbon using aminobenzene acids and electrochemical methods. Carbon, 2016, 99, 157-166.	10.3	17

#	Article	IF	CITATIONS
109	Pd/zeolite-based catalysts for the preferential CO oxidation reaction: ion-exchange, Si/Al and structure effect. Catalysis Science and Technology, 2016, 6, 2623-2632.	4.1	39
110	Biomass-derived binderless fibrous carbon electrodes for ultrafast energy storage. Green Chemistry, 2016, 18, 1506-1515.	9.0	102
111	Switchable Surfactant-Assisted Carbon Nanotube Coatings: Innovation through pH Shift. Frontiers in Materials, 2015, 2, .	2.4	4
112	Palladium and Bimetallic Palladium–Nickel Nanoparticles Supported on Multiwalled Carbon Nanotubes: Application to CarbonCarbon Bondâ€Forming Reactions in Water. ChemCatChem, 2015, 7, 1841-1847.	3.7	49
113	Beyond the H ₂ /CO ₂ upper bound: one-step crystallization and separation of nano-sized ZIF-11 by centrifugation and its application in mixed matrix membranes. Journal of Materials Chemistry A, 2015, 3, 6549-6556.	10.3	99
114	Electrochemical behaviour of activated carbons obtained via hydrothermal carbonization. Journal of Materials Chemistry A, 2015, 3, 15558-15567.	10.3	36
115	Ordered mesoporous titanium oxide for thin film microbatteries with enhanced lithium storage. Electrochimica Acta, 2015, 166, 293-301.	5.2	9
116	Capillary microreactors based on hierarchical SiO2 monoliths incorporating noble metal nanoparticles for the Preferential Oxidation of CO. Chemical Engineering Journal, 2015, 275, 71-78.	12.7	27
117	Functionalization of carbon nanotubes using aminobenzene acids and electrochemical methods. Electroactivity for the oxygen reduction reaction. International Journal of Hydrogen Energy, 2015, 40, 11242-11253.	7.1	34
118	Generation of nitrogen functionalities on activated carbons by amidation reactions and Hofmann rearrangement: Chemical and electrochemical characterization. Carbon, 2015, 91, 252-265.	10.3	44
119	Characterization of a zeolite-templated carbon by electrochemical quartz crystal microbalance and in situ Raman spectroscopy. Carbon, 2015, 89, 63-73.	10.3	22
120	Enhanced electro-oxidation resistance of carbon electrodes induced by phosphorus surface groups. Carbon, 2015, 95, 681-689.	10.3	76
121	Pseudocapacitance of zeolite-templated carbon in organic electrolytes. Energy Storage Materials, 2015, 1, 35-41.	18.0	41
122	Investigation of Pd nanoparticles supported on zeolites for hydrogen production from formic acid dehydrogenation. Catalysis Science and Technology, 2015, 5, 364-371.	4.1	99
123	Improvement of carbon materials performance by nitrogen functional groups in electrochemical capacitors in organic electrolyte at severe conditions. Carbon, 2015, 82, 205-213.	10.3	66
124	Grand Challenges in Carbon-Based Materials Research. Frontiers in Materials, 2014, 1, .	2.4	6
125	Synthesis of Robust Hierarchical Silica Monoliths by Surface-Mediated Solution/Precipitation Reactions over Different Scales: Designing Capillary Microreactors for Environmental Applications. ACS Applied Materials & Interfaces, 2014, 6, 22506-22518.	8.0	12
126	Electrochemical Performance of Hierarchical Porous Carbon Materials Obtained from the Infiltration of Lignin into Zeolite Templates. ChemSusChem, 2014, 7, 1458-1467.	6.8	96

#	Article	IF	CITATIONS
127	New insights on electrochemical hydrogen storage in nanoporous carbons by in situ Raman spectroscopy. Carbon, 2014, 69, 401-408.	10.3	47
128	Single wall carbon nanotubes loaded with Pd and NiPd nanoparticles for H2 sensing at room temperature. Carbon, 2014, 66, 599-611.	10.3	40
129	Tailoring the Surface Chemistry of Activated Carbon Cloth by Electrochemical Methods. ACS Applied Materials & Interfaces, 2014, 6, 11682-11691.	8.0	37
130	On the origin of the high capacitance of nitrogen-containing carbon nanotubes in acidic and alkaline electrolytes. Chemical Communications, 2014, 50, 11343-11346.	4.1	91
131	Optimizing the performance of catalytic traps for hydrocarbon abatement during the cold-start of a gasoline engine. Journal of Hazardous Materials, 2014, 279, 527-536.	12.4	23
132	Development of exfoliated layered stannosilicate for hydrogen adsorption. International Journal of Hydrogen Energy, 2014, 39, 13180-13188.	7.1	11
133	Carbon–carbon asymmetric aqueous capacitor by pseudocapacitive positive and stable negative electrodes. Carbon, 2014, 67, 792-794.	10.3	23
134	Preparation of homogeneous CNT coatings in insulating capillary tubes by an innovative electrochemically-assisted method. Carbon, 2014, 67, 564-571.	10.3	4
135	Effect of the surface chemical groups of activated carbons on their surface adsorptivity to aromatic adsorbates based on π-π interactions. Materials Chemistry and Physics, 2014, 143, 1489-1499.	4.0	25
136	Electroadsorption of Arsenic from Natural Water in Granular Activated Carbon. Frontiers in Materials, 2014, 1, .	2.4	20
137	Graphene-Clay Based Nanomaterials for Clean Energy Storage. Science of Advanced Materials, 2014, 6, 151-158.	0.7	27
138	Flexible ruthenium oxide-activated carbon cloth composites prepared by simple electrodeposition methods. Energy, 2013, 58, 519-526.	8.8	69
139	Tailoring the porosity of chemically activated hydrothermal carbons: Influence of the precursor and hydrothermal carbonization temperature. Carbon, 2013, 62, 346-355.	10.3	198
140	Abatement of hydrocarbons by acid ZSM-5 and BETA zeolites under cold-start conditions. Adsorption, 2013, 19, 357-365.	3.0	20
141	Clay-supported graphene materials: application to hydrogen storage. Physical Chemistry Chemical Physics, 2013, 15, 18635.	2.8	69
142	BETA Zeolite Thin Films Supported on Honeycomb Monoliths with Tunable Properties as Hydrocarbon Traps under Coldâ€ S tart Conditions. ChemSusChem, 2013, 6, 1467-1477.	6.8	20
143	Total oxidation of naphthalene at low temperatures using palladium nanoparticles supported on inorganic oxide-coated cordierite honeycomb monoliths. Catalysis Science and Technology, 2013, 3, 2708.	4.1	11
144	Binderless thin films of zeolite-templated carbon electrodes useful for electrochemical microcapacitors with ultrahigh rate performance. Physical Chemistry Chemical Physics, 2013, 15, 10331.	2.8	21

#	Article	IF	CITATIONS
145	Electrochemical generation of oxygen-containing groups in an ordered microporous zeolite-templated carbon. Carbon, 2013, 54, 94-104.	10.3	62
146	Asymmetric hybrid capacitors based on activated carbon and activated carbon fibre–PANI electrodes. Electrochimica Acta, 2013, 89, 326-333.	5.2	94
147	Activated Carbon Fibers. , 2013, , 155-169.		6
148	Hydrothermal Carbons from Hemicelluloseâ€Derived Aqueous Hydrolysis Products as Electrode Materials for Supercapacitors. ChemSusChem, 2013, 6, 374-382.	6.8	169
149	CuH-ZSM-5 as Hydrocarbon Trap under Cold Start Conditions. Environmental Science & Technology, 2013, 47, 5851-5857.	10.0	29
150	Advances in Hydrogen Storage in Carbon Materials. , 2013, , 269-291.		8
151	Total oxidation of naphthalene using palladium nanoparticles supported on BETA, ZSM-5, SAPO-5 and alumina powders. Applied Catalysis B: Environmental, 2013, 129, 98-105.	20.2	31
152	Nanoarchitectures Based on Layered Titanosilicates Supported on Glass Fibers: Application to Hydrogen Storage. Langmuir, 2013, 29, 7449-7455.	3.5	22
153	Electrooxidation Methods to Produce Pseudocapacitance-containing Porous Carbons. Electrochemistry, 2013, 81, 833-839.	1.4	16
154	Relevance of porosity and surface chemistry of superactivated carbons in capacitors. Tanso, 2013, 2013, 41-47.	0.1	7
155	Molecular simulation design of a multisite solid for the abatement of cold start emissions. Chemical Communications, 2012, 48, 6571.	4.1	15
156	Pillared carbons consisting of silsesquioxane bridged graphene layers for hydrogen storage materials. International Journal of Hydrogen Energy, 2012, 37, 10702-10708.	7.1	37
157	Characterization of activated carbon fiber/polyaniline materials by position-resolved microbeam small-angle X-ray scattering. Carbon, 2012, 50, 1051-1056.	10.3	23
158	A comparison between oxidation of activated carbon by electrochemical and chemical treatments. Carbon, 2012, 50, 1123-1134.	10.3	43
159	Investigating the influence of surfactants on the stabilization of aqueous reduced graphene oxide dispersions and the characteristics of their composite films. Carbon, 2012, 50, 3184-3194.	10.3	97
160	Effect of the aging time of PVP coated palladium nanoparticles colloidal suspensions on their catalytic activity in the preferential oxidation of CO. Catalysis Today, 2012, 187, 2-9.	4.4	33
161	MOF-5 and activated carbons as adsorbents for gas storage. International Journal of Hydrogen Energy, 2012, 37, 2370-2381.	7.1	119
162	MCM-41 Porosity: Are Surface Corrugations Micropores?. Adsorption Science and Technology, 2011, 29, 443-455.	3.2	7

#	Article	IF	CITATIONS
163	Benzene and toluene adsorption at low concentration on activated carbon fibres. Adsorption, 2011, 17, 473-481.	3.0	110
164	Zeolite A/carbon membranes for H2 purification from a simulated gas reformer mixture. Journal of Membrane Science, 2011, 378, 407-414.	8.2	8
165	Effect of the porous texture and surface chemistry of activated carbons on the adsorption of a germanium complex from dilute aqueous solutions. Carbon, 2011, 49, 3325-3331.	10.3	22
166	Hydrogen purification for PEM fuel cells using membranes prepared by ion-exchange of Na-LTA/carbon membranes. Journal of Membrane Science, 2010, 351, 123-130.	8.2	13
167	Screening of different zeolites and silicoaluminophosphates for the retention of propene under cold start conditions. Microporous and Mesoporous Materials, 2010, 130, 239-247.	4.4	53
168	New insights on the direct activation of isotropic petroleum pitch by alkaline hydroxides. Fuel Processing Technology, 2010, 91, 145-149.	7.2	10
169	Scale-up activation of carbon fibres for hydrogen storage. International Journal of Hydrogen Energy, 2010, 35, 2393-2402.	7.1	40
170	Ni-doped carbon xerogels for H2 storage. Carbon, 2010, 48, 2722-2733.	10.3	47
171	Preferential oxidation of CO catalyzed by supported polymer-protected palladium-based nanoparticles. Applied Catalysis B: Environmental, 2010, 98, 161-170.	20.2	47
172	Experimental and simulated propene isotherms on porous solids. Applied Surface Science, 2010, 256, 5292-5297.	6.1	14
173	Regeneration of activated carbons saturated with benzene or toluene using an oxygen-containing atmosphere. Chemical Engineering Science, 2010, 65, 2190-2198.	3.8	42
174	Characteristics of an activated carbon monolith for a helium adsorption compressor. Carbon, 2010, 48, 123-131.	10.3	15
175	Measuring cycle efficiency and capacitance of chemically activated carbons in propylene carbonate. Carbon, 2010, 48, 1451-1456.	10.3	40
176	Electrochemical regeneration and porosity recovery of phenol-saturated granular activated carbon in an alkaline medium. Carbon, 2010, 48, 2734-2745.	10.3	105
177	A comparison of hydrogen storage in activated carbons and a metal–organic framework (MOF-5). Carbon, 2010, 48, 2906-2909.	10.3	67
178	Carbon for Energy Storage and Environment Protection 2009 Special Issue. Energy & Fuels, 2010, 24, 3301-3301.	5.1	1
179	Kinetics of Double-Layer Formation: Influence of Porous Structure and Pore Size Distribution. Energy & Fuels, 2010, 24, 3378-3384.	5.1	32
180	Comparison among Chemical, Thermal, and Electrochemical Regeneration of Phenol-Saturated Activated Carbon. Energy & Fuels, 2010, 24, 3366-3372.	5.1	73

#	Article	IF	CITATIONS
181	Fundamentals of methane adsorption in microporous carbons. Microporous and Mesoporous Materials, 2009, 124, 110-116.	4.4	82
182	Arsenic species interactions with a porous carbon electrode as determined with an electrochemical quartz crystal microbalance. Electrochimica Acta, 2009, 54, 3996-4004.	5.2	17
183	Effect of electrochemical treatments on the surface chemistry of activated carbon. Carbon, 2009, 47, 1018-1027.	10.3	105
184	lsotropic petroleum pitch as a carbon precursor for the preparation of activated carbons by KOH activation. Carbon, 2009, 47, 2141-2142.	10.3	37
185	Activated Carbons for the Removal of Low-Concentration Gaseous Toluene at the Semipilot Scale. Industrial & Engineering Chemistry Research, 2009, 48, 2066-2075.	3.7	28
186	Porous Texture of Carbons. Advanced Materials and Technologies, 2009, , 115-162.	0.4	13
187	Electrochemical deposition of platinum nanoparticles on different carbon supports and conducting polymers. Journal of Applied Electrochemistry, 2008, 38, 259-268.	2.9	129
188	Effect of the stabilisation time of pitch fibres on the molecular sieve properties of carbon fibres. Microporous and Mesoporous Materials, 2008, 109, 21-27.	4.4	13
189	Advanced activated carbon monoliths and activated carbons for hydrogen storage. Microporous and Mesoporous Materials, 2008, 112, 235-242.	4.4	117
190	Effects of different carbon materials on MgH2 decomposition. Carbon, 2008, 46, 126-137.	10.3	158
191	Effect of surface chemistry on electrochemical storage of hydrogen in porous carbon materials. Carbon, 2008, 46, 1053-1059.	10.3	83
192	Effect of the intercalated cation on the properties of poly(o-methylaniline)/maghnite clay nanocomposites. European Polymer Journal, 2008, 44, 1275-1284.	5.4	20
193	Impact of the carbonisation temperature on the activation of carbon fibres and their application for hydrogen storage. International Journal of Hydrogen Energy, 2008, 33, 3091-3095.	7.1	35
194	Comparative study of the micropore development on physical activation of carbon fibers from coal tar and petroleum pitches. Microporous and Mesoporous Materials, 2008, 112, 125-132.	4.4	18
195	Zeolite LTA/carbon membranes for air separation. Microporous and Mesoporous Materials, 2008, 115, 51-60.	4.4	17
196	Inorganic materials as supports for palladium nanoparticles: Application in the semi-hydrogenation of phenylacetylene. Journal of Catalysis, 2008, 257, 87-95.	6.2	98
197	Effects of Carbon-Supported Nickel Catalysts on MgH2Decomposition. Journal of Physical Chemistry C, 2008, 112, 5984-5992.	3.1	62
198	Semihydrogenation of Phenylacetylene Catalyzed by Palladium Nanoparticles Supported on Carbon Materials. Journal of Physical Chemistry C, 2008, 112, 3827-3834.	3.1	125

#	Article	IF	CITATIONS
199	Adsorption on Activated Carbon Fibers. , 2008, , 431-454.		12
200	Electrochemical Methods to Enhance the Capacitance in Activated Carbon/Polyaniline Composites. Journal of the Electrochemical Society, 2008, 155, A672.	2.9	53
201	Synthesis of Activated Carbon Fibers for High-Pressure Hydrogen Storage. Ceramic Transactions, 2008, , 69-75.	0.1	1
202	Hydrogen Adsorption on Carbon Materials at High Pressures and Different Temperatures. NATO Science for Peace and Security Series C: Environmental Security, 2008, , 165-175.	0.2	3
203	Controlling Porosity to Improve Activated Carbon Applications. NATO Science for Peace and Security Series C: Environmental Security, 2008, , 97-106.	0.2	2
204	Synthesis and Permeation Properties of Silicalite-1/Carbon Membranes. Industrial & Engineering Chemistry Research, 2007, 46, 3997-4006.	3.7	7
205	State of Pt in Dried and Reduced PtIn and PtSn Catalysts Supported on Carbon. Journal of Physical Chemistry C, 2007, 111, 4710-4716.	3.1	30
206	Hydrogen storage on chemically activated carbons and carbon nanomaterials at high pressures. Carbon, 2007, 45, 293-303.	10.3	420
207	A new strategy for germanium adsorption on activated carbon by complex formation. Carbon, 2007, 45, 2519-2528.	10.3	50
208	Carbon activation with KOH as explored by temperature programmed techniques, and the effects of hydrogen. Carbon, 2007, 45, 2529-2536.	10.3	335
209	Stabilisation of low softening point petroleum pitch fibres by iodine treatment. Fuel Processing Technology, 2007, 88, 265-272.	7.2	9
210	Influence of carbon fibres crystallinities on their chemical activation by KOH and NaOH. Microporous and Mesoporous Materials, 2007, 101, 397-405.	4.4	103
211	Activated carbons prepared by pyrolysis of mixtures of carbon precursor/alkaline hydroxide. Journal of Analytical and Applied Pyrolysis, 2007, 80, 166-174.	5.5	131
212	Polyaniline/porous carbon electrodes by chemical polymerisation: Effect of carbon surface chemistry. Electrochimica Acta, 2007, 52, 4962-4968.	5.2	62
213	Isotropic and anisotropic microporosity development upon chemical activation of carbon fibers, revealed by microbeam small-angle X-ray scattering. Carbon, 2006, 44, 1121-1129.	10.3	17
214	Competitive adsorption of a benzene–toluene mixture on activated carbons at low concentration. Carbon, 2006, 44, 1455-1463.	10.3	164
215	Chemical and electrochemical characterization of porous carbon materials. Carbon, 2006, 44, 2642-2651.	10.3	211
216	Semihydrogenation of phenylacetylene catalyzed by metallic nanoparticles containing noble metals. Journal of Catalysis, 2006, 243, 74-81.	6.2	121

#	Article	IF	CITATIONS
217	Total oxidation of volatile organic compounds by vanadium promoted palladium-titania catalysts: Comparison of aromatic and polyaromatic compounds. Applied Catalysis B: Environmental, 2006, 62, 66-76.	20.2	82
218	Preparation of silicalite-1 layers on Pt-coated carbon materials: a possible electrochemical approach towards membrane reactors. Microporous and Mesoporous Materials, 2005, 78, 159-167.	4.4	15
219	KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation. Carbon, 2005, 43, 786-795.	10.3	727
220	Adsorption properties of carbon molecular sieves prepared from an activated carbon by pitch pyrolysis. Carbon, 2005, 43, 1643-1651.	10.3	47
221	Behaviour of activated carbons with different pore size distributions and surface oxygen groups for benzene and toluene adsorption at low concentrations. Carbon, 2005, 43, 1758-1767.	10.3	472
222	Role of surface chemistry on electric double layer capacitance of carbon materials. Carbon, 2005, 43, 2677-2684.	10.3	372
223	Oxygen functional groups involved in the styrene production reaction detected by quasi in situ XPS. Catalysis Today, 2005, 102-103, 248-253.	4.4	115
224	Effect of carbon fibres on the mechanical properties and corrosion levels of reinforced portland cement mortars. Cement and Concrete Research, 2005, 35, 324-331.	11.0	82
225	Comparative Characterization Study of Microporous Carbons by HRTEM Image Analysis and Gas Adsorption. Journal of Physical Chemistry B, 2005, 109, 15032-15036.	2.6	20
226	Carbon-supported PtSn Catalysts: Characterization and Catalytic Properties. Journal of the Japan Petroleum Institute, 2004, 47, 164-178.	0.6	7
227	Oxidation of SO2 catalysed by Mn-zeolites in aqueous phase. Applied Catalysis B: Environmental, 2004, 47, 203-207.	20.2	14
228	Role of the activated carbon surface chemistry in the adsorption of phenanthrene. Carbon, 2004, 42, 1683-1689.	10.3	115
229	About reactions occurring during chemical activation with hydroxides. Carbon, 2004, 42, 1371-1375.	10.3	342
230	Activation of coal tar pitch carbon fibres: Physical activation vs. chemical activation. Carbon, 2004, 42, 1367-1370.	10.3	280
231	Analysis of the microporosity shrinkage upon thermal post-treatment of H3PO4 activated carbons. Carbon, 2004, 42, 1339-1343.	10.3	35
232	HRTEM study of activated carbons prepared by alkali hydroxide activation of anthracite. Carbon, 2004, 42, 1305-1310.	10.3	36
233	Usefulness of CO2 adsorption at 273 K for the characterization of porous carbons. Carbon, 2004, 42, 1233-1242.	10.3	317
234	Probe Molecule Kinetic Studies of Adsorption on MCM-41. Journal of Physical Chemistry B, 2003, 107, 1012-1020.	2.6	46

#	Article	IF	CITATIONS
235	Microporous Solid Characterization: Use of Classical and"New―Techniques. Chemical Engineering and Technology, 2003, 26, 852-857.	1.5	16
236	Influence of the nature and the content of carbon fiber on properties of thermoplastic polyurethane-carbon fiber composites. Journal of Applied Polymer Science, 2003, 90, 2676-2683.	2.6	31
237	Understanding chemical reactions between carbons and NaOH and KOH. Carbon, 2003, 41, 267-275.	10.3	1,003
238	Stabilisation of low softening point petroleum pitch fibres by HNO3. Carbon, 2003, 41, 1001-1007.	10.3	24
239	Influence of pore structure and surface chemistry on electric double layer capacitance in non-aqueous electrolyte. Carbon, 2003, 41, 1765-1775.	10.3	414
240	The role of different nitrogen functional groups on the removal of SO2 from flue gases by N-doped activated carbon powders and fibres. Carbon, 2003, 41, 1925-1932.	10.3	196
241	Preparation of thin silicalite-1 layers on carbon materials by electrochemical methods. Microporous and Mesoporous Materials, 2003, 66, 331-340.	4.4	27
242	Catalytic cracking of ethylene-vinyl acetate copolymers: comparison of different zeolites. Journal of Analytical and Applied Pyrolysis, 2003, 68-69, 495-506.	5.5	28
243	Silicalite-1 membranes supported on porous carbon discs. Microporous and Mesoporous Materials, 2003, 59, 147-159.	4.4	20
244	About the exclusive mesoporous character of MCM-41. Studies in Surface Science and Catalysis, 2002, 144, 83-90.	1.5	19
245	Microbeam small angle X-ray scattering (\hat{l} 4SAXS): a novel technique for the characterization of activated carbon fibers Studies in Surface Science and Catalysis, 2002, 144, 51-58.	1.5	9
246	SO2â^'Faujasite Interaction:  A Study by in Situ FTIR and Thermogravimetry. Langmuir, 2002, 18, 9778-9782.	3.5	14
247	Micropore Size Distributions of Activated Carbons and Carbon Molecular Sieves Assessed by High-Pressure Methane and Carbon Dioxide Adsorption Isotherms. Journal of Physical Chemistry B, 2002, 106, 9372-9379.	2.6	58
248	Powdered Activated Carbons and Activated Carbon Fibers for Methane Storage:  A Comparative Study. Energy & Fuels, 2002, 16, 1321-1328.	5.1	124
249	Hydrogen Storage in Activated Carbons and Activated Carbon Fibers. Journal of Physical Chemistry B, 2002, 106, 10930-10934.	2.6	313
250	Selective synthesis of zeolite briquettes from conformed ashes. Journal of Chemical Technology and Biotechnology, 2002, 77, 287-291.	3.2	7
251	Application of zeolitic material synthesised from fly ash to the decontamination of waste water and flue gas. Journal of Chemical Technology and Biotechnology, 2002, 77, 292-298.	3.2	82
252	A TEOM-MS study on the interaction of N2O with a hydrotalcite-derived multimetallic mixed oxide catalyst. Applied Catalysis A: General, 2002, 225, 87-100.	4.3	14

#	Article	IF	CITATIONS
253	Activated carbon fibre monoliths. Fuel Processing Technology, 2002, 77-78, 445-451.	7.2	16
254	Can highly activated carbons be prepared with a homogeneous micropore size distribution?. Fuel Processing Technology, 2002, 77-78, 325-330.	7.2	25
255	Usefulness of chemically activated anthracite for the abatement of VOC at low concentrations. Fuel Processing Technology, 2002, 77-78, 331-336.	7.2	33
256	Advances in the study of methane storage in porous carbonaceous materials. Fuel, 2002, 81, 1777-1803.	6.4	367
257	Structural characterization of N-containing activated carbon fibers prepared from a low softening point petroleum pitch and a melamine resin. Carbon, 2002, 40, 597-608.	10.3	408
258	Influence of pore size distribution on methane storage at relatively low pressure: preparation of activated carbon with optimum pore size. Carbon, 2002, 40, 989-1002.	10.3	210
259	Increase of the softening point of a petroleum pitch by heat-treatment in the presence of a nitrogenated resin. Carbon, 2002, 40, 633-636.	10.3	2
260	Carbon–ceramic composites from coal tar pitch and clays: application as electrocatalyst support. Carbon, 2002, 40, 2193-2200.	10.3	19
261	High surface area carbon nanotubes prepared by chemical activation. Carbon, 2002, 40, 1614-1617.	10.3	107
262	Molecular sieve properties obtained by cracking of methane on activated carbon fibers. Carbon, 2002, 40, 2489-2494.	10.3	31
263	Characterization of pore distribution in activated carbon fibers by microbeam small angle X-ray scattering. Carbon, 2002, 40, 2727-2735.	10.3	44
264	Activated carbon monoliths for methane storage: influence of binder. Carbon, 2002, 40, 2817-2825.	10.3	172
265	Enhanced capacitance of carbon nanotubes through chemical activation. Chemical Physics Letters, 2002, 361, 35-41.	2.6	267
266	Synthesis and characterisation of MFI-type zeolites supported on carbon materials. Microporous and Mesoporous Materials, 2001, 42, 255-268.	4.4	58
267	Temperature programmed desorption study on the mechanism of SO2 oxidation by activated carbon and activated carbon, 2001, 39, 231-242.	10.3	86
268	Preparation of activated carbons from Spanish anthracite. Carbon, 2001, 39, 741-749.	10.3	608
269	Preparation of activated carbons from Spanish anthracite. Carbon, 2001, 39, 751-759.	10.3	256
270	In situ small angle neutron scattering study of CD4 adsorption under pressure in activated carbons. Carbon, 2001, 39, 1343-1354.	10.3	19

#	Article	IF	CITATIONS
271	Characterisation of coal tar pitches by thermal analysis, infrared spectroscopy and solvent fractionation. Fuel, 2001, 80, 41-48.	6.4	110
272	Effect of the support in Pt and PtSn catalysts used for selective hydrogenation of carvone. Catalysis Today, 2001, 66, 289-295.	4.4	30
273	Characterization of activated carbon fibers by Positron Annihilation Lifetime Spectroscopy (PALS). Studies in Surface Science and Catalysis, 2000, 128, 523-532.	1.5	8
274	Factors controling the SO2 removal by porous carbons: relevance of the SO2 oxidation step. Carbon, 2000, 38, 335-344.	10.3	178
275	Further evidences of the usefulness of CO2 adsorption to characterize microporous solids Studies in Surface Science and Catalysis, 2000, 128, 485-494.	1.5	43
276	Porosity Development during CO2and Steam Activation in a Fluidized Bed Reactor. Energy & Fuels, 2000, 14, 142-149.	5.1	39
277	XAFS Study of Dried and Reduced PtSn/C Catalysts: Nature and Structure of the Catalytically Active Phase. Langmuir, 2000, 16, 1123-1131.	3.5	32
278	Characterization of Bimetallic PtSn Catalysts Supported on Purified and H2O2-Functionalized Carbons Used for Hydrogenation Reactions. Journal of Catalysis, 1999, 184, 514-525.	6.2	72
279	Catalytic Oxidation of Sulfur Dioxide by Activated Carbon: A Physical Chemistry Experiment. Journal of Chemical Education, 1999, 76, 958.	2.3	17
280	Preparation of conductive carbon-ceramic composites from coal tar pitch and ceramic monoliths. Carbon, 1998, 36, 1003-1009.	10.3	19
281	Molecular sieve properties of general-purpose carbon fibres. Carbon, 1998, 36, 1353-1360.	10.3	43
282	Characterization of activated carbon fibers by small angle x-ray scattering. Carbon, 1998, 36, 309-312.	10.3	22
283	CO2As an Adsorptive To Characterize Carbon Molecular Sieves and Activated Carbons. Langmuir, 1998, 14, 4589-4596.	3.5	359
284	States of Pt in Pt/C catalyst precursors after impregnation, drying and reduction steps. Applied Catalysis A: General, 1998, 170, 93-103.	4.3	92
285	Further Advances in the Characterization of Microporous Carbons by Physical Adsorption of Gases. Tanso, 1998, 1998, 316-325.	0.1	59
286	Methane storage in activated carbon fibres. Carbon, 1997, 35, 291-297.	10.3	144
287	The effects of hydrogen on thermal desorption of oxygen surface complexes. Carbon, 1997, 35, 543-554.	10.3	81
288	Preparation of general purpose carbon fibers from coal tar pitches with low softening point. Carbon, 1997, 35, 1079-1087.	10.3	85

17

#	Article	IF	CITATIONS
289	Theoretical and experimental studies of methane adsorption on microporous carbons. Carbon, 1997, 35, 1251-1258.	10.3	104
290	Production of activated carbons: use of CO2 versus H2O as activating agent. A reply to a letter from P. L. Walker Jr Carbon, 1997, 35, 1665-1668.	10.3	25
291	Characterization of Activated Carbon Fibers by CO2 Adsorption. Langmuir, 1996, 12, 2820-2824.	3.5	378
292	Structure Sensitivity of CO2Hydrogenation Reaction Catalyzed by Pt/Carbon Catalysts. Langmuir, 1996, 12, 379-385.	3.5	20
293	Structural study of a phenolformaldehyde char. Carbon, 1996, 34, 719-727.	10.3	28
294	Selective porosity development by calcium-catalyzed carbon gasification. Carbon, 1996, 34, 869-878.	10.3	42
295	Structural studies of microporous carbons by neutron diffraction. Carbon, 1996, 34, 857-860.	10.3	15
296	CO2 hydrogenation under pressure on catalysts Ptî—,Ca/C. Applied Catalysis A: General, 1996, 134, 159-167.	4.3	16
297	lsotopic steady-state and step-response study on carbon gasification catalyzed by calcium. Carbon, 1995, 33, 1147-1154.	10.3	11
298	Metal-support interaction in Pt/C catalysts. Influence of the support surface chemistry and the metal precursor. Carbon, 1995, 33, 3-13.	10.3	191
299	Effect of the activating gas on tensile strength and pore structure of pitch-based carbon fibres. Carbon, 1994, 32, 1277-1283.	10.3	132
300	On why do different carbons show different gasification rates: A transient isotopic CO2 gasification study. Carbon, 1994, 32, 1223-1231.	10.3	29
301	Assessment of the CO2-carbon gasification catalyzed by calcium. A transient isotopic study. Carbon, 1994, 32, 423-430.	10.3	17
302	Carbon dioxide hydrogenation catalyzed by alkaline earth- and platinum-based catalysts supported on carbon. Applied Catalysis A: General, 1994, 116, 187-204.	4.3	21
303	Characterization of pore size in activated carbons by small-angle x-ray scattering. Studies in Surface Science and Catalysis, 1994, , 273-281.	1.5	4
304	CO2-Carbon gasification catalyzed by alkaline-earths: Comparative study of the metal-carbon interaction and of the specific activity. Carbon, 1993, 31, 493-500.	10.3	25
305	Tpd and TPR characterization of carbonaceous supports and Pt/C catalysts. Carbon, 1993, 31, 895-902.	10.3	149
306	XAFS and thermogravimetry study of the sintering of calcium supported on carbon. Energy & Fuels, 1993, 7, 139-145.	5.1	28

#	Article	IF	CITATIONS
307	Local structure of calcium species dispersed on carbon: influence of the metal loading procedure and its evolution during pyrolysis. Energy & Fuels, 1993, 7, 625-631.	5.1	18
308	A temperature-programmed reaction study of calcium-catalyzed carbon gasification. Energy & Fuels, 1992, 6, 287-293.	5.1	19
309	Carbon gasification catalyzed by calcium: A high vacuum temperature programmed desorption study. Carbon, 1992, 30, 995-1000.	10.3	24
310	Calcium catalytic active sites in carbon-gas reactions. Determination of the specific activity. Energy & Fuels, 1991, 5, 796-802.	5.1	14
311	Carbon dioxide-calcium oxide surface and bulk reactions: thermodynamic and kinetic approach. The Journal of Physical Chemistry, 1991, 95, 6611-6617.	2.9	40
312	Calcium-carbon interaction study: Its importance in the carbon-gas reactions. Carbon, 1991, 29, 361-369.	10.3	43
313	In situ methods used to characterize calcium as a catalyst of carbon gasification reactions. Catalysis Today, 1991, 9, 219-226.	4.4	9
314	An Approach to the Mechanism of the CO2-Carbon Gasification Reaction Catalyzed by Calcium. , 1991, , 409-434.		4
315	The state of calcium as a char gasification catalyst — a temperature-programmed reaction study. Fuel, 1990, 69, 878-884.	6.4	19
316	Nature and structure of calcium dispersed on carbon. Energy & amp; Fuels, 1990, 4, 467-474.	5.1	48
317	Removal of heavy metal ions by adsorption onto activated carbon prepared from Stipa tenacissima leaves. , 0, 64, 179-188.		2