Qian Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3567130/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Coupled-channel approach to <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:msubsup><mml:mi>T</mml:mi><mml:mrow><mml:mi>c</mml:mi><mml:mi>c</mml:mi> including three-body effects. Physical Review D, 2022, 105, .</mml:mrow></mml:msubsup></mml:math>	/ m nl:mrc	woork mml:m
2	Study of heavy quark conserving weak decays in the quark model. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2022, 826, 136916.	4.1	12
3	Lineshape of the compact fully heavy tetraquark. Physical Review D, 2022, 105, .	4.7	12
4	Study of exotic hadrons with machine learning. Physical Review D, 2022, 105, .	4.7	4
5	X ₀ (2900) and its heavy quark spin partners in molecular picture *. Chinese Physics C, 2021, 45, 021003.	3.7	33
6	Deciphering the Nature of X(3872) in Heavy Ion Collisions. Physical Review Letters, 2021, 126, 012301.	7.8	31
7	Electron-ion collider in China. Frontiers of Physics, 2021, 16, 1.	5.0	208
8	Revisiting the nature of the Pc pentaquarks. Journal of High Energy Physics, 2021, 2021, 1.	4.7	45
9	Prompt production of the hidden charm pentaquarks in the LHC. European Physical Journal C, 2021, 81, 1.	3.9	10
10	Hyperon weak radiative decay *. Chinese Physics C, 2021, 45, 013101.	3.7	7
11	Possible Studies at the First Stage of the NICA Collider Operation with Polarized and Unpolarized Proton and Deuteron Beams. Physics of Particles and Nuclei, 2021, 52, 1044-1119.	0.7	18
12	Production of doubly charmed exotic hadrons in heavy ion collisions. Physical Review D, 2021, 104, .	4.7	24
13	Hadronic weak decays of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:msub><mml:mi mathvariant="normal">^^/mml:mi><mml:mi>c</mml:mi>//mml:msub>//mml:math, in the quark model. Physical Review D. 2020, 102</mml:mi </mml:msub></mml:math>	4.7	12
14	display="inline"> <mml:msub><mml:mi>P</mml:mi>c</mml:msub> States as Hadronic Molecules and Hints of a Narrow <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><<mml:msub><mml:mi>P</mml:mi>c</mml:msub><mml:mo< td=""><td>7.8</td><td>97</td></mml:mo<></mml:math 	7.8	97
15	stretchy="false">(<mml:mn>4380</mml:mn> <mml:mo) 0="" 10="" 197="" 50="" eiqq0="" id<br="" if="" ij="" overlock="" rgb1="">Hadronic molecules. Reviews of Modern Physics, 2018, 90, .</mml:mo)>	(stretchy: 45.6	="faise">)836
16	Where does the X (5568) structure come from?. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2017, 767, 470-473.	4.1	20
17	Isospin analysis ofB→DâŽDÂ ⁻ Kand the absence of the Z c (3900) in B decays. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2017, 775, 50-53.	4.1	3
18	The role of anomalous triangle singularity in the understanding of the recently observed heavy pentaquark candidates Pc+(4380) and Pc+(4450). AIP Conference Proceedings, 2016, , .	0.4	0

QIAN WANG

#	Article	IF	CITATIONS
19	P -wave coupled channel effects in electron-positron annihilation. Physical Review D, 2016, 94, .	4.7	8
20	Understanding the newly observed heavy pentaquark candidates. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2016, 757, 231-236.	4.1	194
21	Employing spin symmetry to disentangle different models for the < mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> < mml:mi>X < /mml:mi> < mml:mi>Y < /mml:mi> < mml:mi>Z < /mml:mi> < /mml:mi> > tates < mml:mi>Z < /mml:mi> < /mml:mi> < mml:mi> > tates < mml:math	4.7	62
22	xmins:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow> <mml:msubsup> <mml:mrow> <mml:mi>P</mml:mi> </mml:mrow> <mml:mrow> <m stretchy="false"> (<mml:mn> 4380</mml:mn> <mml:mo) 0="" 10="" 50="" 617="" etqq0="" overlock="" rgbt="" tc<="" td="" tf="" tj=""><td>ml:mi>c<!--<br-->(st.retchy</td><td>'mml:mi></td></mml:mo)></m ="følse">)</mml:mrow></mml:msubsup></mml:mrow>	ml:mi>c <br (st.retchy	'mml:mi>
23	xmlns:mml="http://www.w3.org/1998/Math/MathML" Lightest neutral hypernuclei with strangeness mmtmath xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mo>â^'</mml:mo><mml:mn>1xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo>â^'</mml:mo><mml:mn>2physical Review C. 2015. 91</mml:mn></mml:mrow></mml:mn></mml:mrow>	nn>៹/mm nń> <td>l:mrow>l:mrow></td>	l:mrow>l:mrow>
24	Could the near-threshold <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>X</mml:mi><mml:mi>Y</mml:mi><mml:mi>Z</mml:mi></mml:math> states be simply kinematic effects?. Physical Review D, 2015, 91, .	4.7	95
25	display="inline"> <mml:mi>Y</mml:mi> <mml:mo stretchy="false">(<mml:mn>4260</mml:mn><mml:mo) 0.784314="" 1="" 10="" 5<="" etqq1="" overlock="" rgbt="" td="" tf="" tj=""><td>0 502 Td (4.7</td><td>(stretchy="fal</td></mml:mo)></mml:mo 	0 502 Td (4.7	(stretchy="fal
26	Search for milimath xmins:mml="http://www.w3.org/1998/Math/MathML" display="inline"> < mml:msup> < mml:mi> J < /mml:mi> < mml:mrow> < mml:mi> P < /mml:mi> < mml:mi> C < /mml:mi> < /m state in < mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> < mml:msup> < mml:mi> e < /mml:mi> < mml:mo> + < /mml:mo> < /mml:msup> < mml:msup> < mml:mi> p	ml:mrow> 4.7 e <td>7 i><mml:mo>8</mml:mo></td>	7 i> <mml:mo>8</mml:mo>
27	display="inline" > <mml:mrow><mml:mrow><mml:mi>Y</mml:mi></mml:mrow><mml:mo stretchy="false" >(<mml:mn>4260</mml:mn><mml:mo) 0.784314="" 1="" 10="" 5<="" etqq1="" overlock="" rgbt="" td="" tf="" tj=""><td>0 422 Td (4.7</td><td>(stretchy="fal</td></mml:mo)></mml:mo </mml:mrow>	0 422 Td (4.7	(stretchy="fal
28	<pre>xmm:mul= http://www.w3.org/1998/Math/MathML"</pre>	(strætchy	=" fao lse">)
29	displayetatime Pkysinil/NevicymDn2014; 66ji:mo stretchy="false">(<mml:mn>4260</mml:mn> <mml:mo) 0.784314="" 1="" 10="" 5<br="" etqq1="" overlock="" rgbt="" tf="" tj="">xmlns:mml="http://www.w3.org/1998/Math/MathML"</mml:mo)>	0 347 Td (7.8	(stretchy="fal 224
30	display—"infine" - combinistic - combinite 2 c/nmhnite combinite c/nmhnite c/nmhnise c/nmhnisub - combine Systematic study of the singularity mechanism in heavy quarkonium decays. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2013, 725, 106-110.	4.1	68
31	Production of the <mml:math <br="" altimg="s11.gif" xmins:mml="http://www.w3.org/1998/Wath/WathWL">overflow="scroll"><mml:mi>X</mml:mi><mml:mo stretchy="false">(<mml:mn>3872</mml:mn><mml:mo) 0.784314="" 1="" 10="" 5<br="" etqq1="" overlock="" rgbt="" tf="" tj="">Confirming the molecular nature of the<mml:math< td=""><td>0 257 Td (</td><td>(støøtchy="fal</td></mml:math<></mml:mo)></mml:mo </mml:math>	0 257 Td ((støøtchy="fal
32	Xmlns:mml="http://www.w3.org/1998/Math/MathML"2013, 725, 127-133. display="inline"> <mml:msub><mml:mi>Z</mml:mi><mml:mi>b</mml:mi></mml:msub> <mml:mo stretchy="false">(<mml:mn>10610</mml:mn><mml:mo) 0="" 10="" 1<br="" 217="" 50="" etqq0="" overlock="" rgbt="" tf="" tj="">Further understanding of the non-sumlimath xmlns:mml="http://www.w3.org/1998/Math/MathML"</mml:mo)></mml:mo 	d (st retch	y <i>=</i> #false">)<
33	cispiey=rm##letp://mmm/w0.arg/fi060f/Math/Math/MatoveiL" accelet="true"> <mmhhi>0.5/mmhhi>1.57m/mosAidecays of<mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>^mml:mi><mml:mo></mml:mo></mml:mi></mml:math></mmhhi>	4.7	27
34	PROBING SCALAR MESON STRUCTURES IN χ _{c1} DECAYS INTO PSEUDOSCALAR AND SCALAR. International Journal of Modern Physics A, 2012, 27, 1250135.	1.5	stretchy="fal
35	Open charm effects in the explanation of the long-standing " <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>ï</mml:mi>iipuzzle― Physical Review D, 2012, B5dated study of the cmml:math xmlns:mpl="http://www.w3.org/1998/Math/MathMl" altimg="si1.sif"</mml:math 	4.7	26
36	overflow="scroll"> <mml:msub><mml:mrow><mml:mi>Î-</mml:mi></mml:mrow><mml:mrow><mml:mi>cand <mml:math <br="" altimg="si2.gif" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"><mml:msubsup><mml:mrow><mml:mi>Î-</mml:mi></mml:mrow><mml:mrow><mml:mi>cdecays into light vector mesons. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2012, 711, 364-370.</mml:mi></mml:mrow></mml:msubsup></mml:math></mml:mi></mml:mrow></mml:msub>	ni> < /mml: ml:mi> < /n	:mrow>14 nml:mrow> <r< td=""></r<>

#	Article	IF	CITATIONS
37	Open charm effects in <mmi:math xmins:mmi="http://www.w3.org/1998/Math/Math/Math/Math/Math/Math/Math/Math</td"><td>e4.7 nl:mi><r< td=""><td>ni> < mml:mo: 18 nml:mn>0</td></r<></td></mmi:math>	e4.7 nl:mi> <r< td=""><td>ni> < mml:mo: 18 nml:mn>0</td></r<>	ni> < mml:mo: 18 nml:mn>0