Alain Sarasin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3566400/publications.pdf Version: 2024-02-01

ALAIN SADASIN

#	Article	IF	CITATIONS
1	TP53 mutations in human skin cancers. Human Mutation, 2003, 21, 217-228.	2.5	246
2	Incidence of DNA repair deficiency disorders in western Europe: Xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy. DNA Repair, 2008, 7, 744-750.	2.8	227
3	Mutation update for the <i>CSB</i> / <i>ERCC6</i> and <i>CSA</i> / <i>ERCC8</i> genes involved in Cockayne syndrome. Human Mutation, 2010, 31, 113-126.	2.5	193
4	Molecular analysis of mutations in DNA polymerase η in xeroderma pigmentosum-variant patients. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 815-820.	7.1	165
5	Role of DNA Polymerase $\hat{\mathbf{i}}$ in the UV Mutation Spectrum in Human Cells. Journal of Biological Chemistry, 2003, 278, 18767-18775.	3.4	119
6	DNA Polymerase η Is Involved in Hypermutation Occurring during Immunoglobulin Class Switch Recombination. Journal of Experimental Medicine, 2004, 199, 265-270.	8.5	117
7	A UV-sensitive syndrome patient with a specific <i>CSA</i> mutation reveals separable roles for CSA in response to UV and oxidative DNA damage. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6209-6214.	7.1	112
8	Role of DNA polymerases Ε, ι and ζ in UV resistance and UV-induced mutagenesis in a human cell line. DNA Repair, 2008, 7, 1551-1562.	2.8	93
9	Clues to epidermal cancer proneness revealed by reconstruction of DNA repair-deficient xeroderma pigmentosum skin in vitro. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 7817-7822.	7.1	82
10	The genetics of the hereditary xeroderma pigmentosum syndrome. Biochimie, 2002, 84, 49-60.	2.6	79
11	Reduced XPC DNA repair gene mRNA levels in clinically normal parents of xeroderma pigmentosum patients. Carcinogenesis, 2005, 27, 84-94.	2.8	79
12	A Prevalent Mutation with Founder Effect in Xeroderma Pigmentosum Group C from North Africa. Journal of Investigative Dermatology, 2010, 130, 1537-1542.	0.7	79
13	Targeted Gene Therapy of Xeroderma Pigmentosum Cells Using Meganuclease and TALENâ"¢. PLoS ONE, 2013, 8, e78678.	2.5	76
14	Prenatal diagnosis in a subset of trichothiodystrophy patients defective in DNA repair. British Journal of Dermatology, 1992, 127, 485-491.	1.5	74
15	The proapoptotic effect of hepatitis B virus HBx protein correlates with its transactivation activity in stably transfected cell lines. Oncogene, 1999, 18, 2860-2871.	5.9	73
16	p53 mutations in skin and internal tumors of xeroderma pigmentosum patients belonging to the complementation group C. Cancer Research, 1998, 58, 4402-9.	0.9	67
17	Retrovirus-mediated gene transfer corrects DNA repair defect of xeroderma pigmentosum cells of complementation groups A, B and C. Gene Therapy, 1997, 4, 1077-1084.	4.5	65
18	Differential behaviors toward ultraviolet A and B radiation of fibroblasts and keratinocytes from normal and DNA-repair-deficient patients. Cancer Research, 1999, 59, 1212-8.	0.9	59

Alain Sarasin

#	Article	IF	CITATIONS
19	New clinicoâ€genetic classification of trichothiodystrophy. American Journal of Medical Genetics, Part A, 2009, 149A, 2020-2030.	1.2	56
20	New insights for understanding the transcription-coupled repair pathway. DNA Repair, 2007, 6, 265-269.	2.8	55
21	Reversal of mitochondrial defects with CSB-dependent serine protease inhibitors in patient cells of the progeroid Cockayne syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2910-9.	7.1	55
22	Functional Retroviral Vector for Gene Therapy of Xeroderma Pigmentosum Group D Patients. Human Gene Therapy, 1995, 6, 1307-1315.	2.7	54
23	Xeroderma pigmentosum: From Symptoms and Genetics to Gene-Based Skin Therapy. Cells Tissues Organs, 2004, 177, 189-198.	2.3	53
24	Genetic Correction of DNA Repair-Deficient/Cancer-Prone Xeroderma Pigmentosum Group C Keratinocytes. Human Gene Therapy, 2003, 14, 983-996.	2.7	52
25	The Comet Assay as a Repair Test for Prenatal Diagnosis of Xeroderma Pigmentosum and Trichothiodystrophy. Journal of Investigative Dermatology, 1997, 108, 154-159.	0.7	50
26	A new XPC gene splicing mutation has lead to the highest worldwide prevalence of xeroderma pigmentosum in black Mahori patients. DNA Repair, 2011, 10, 577-585.	2.8	45
27	Preclinical Corrective Gene Transfer in Xeroderma Pigmentosum Human Skin Stem Cells. Molecular Therapy, 2012, 20, 798-807.	8.2	44
28	Correlation of Phenotype/Genotype in a Cohort of 23 Xeroderma Pigmentosum-Variant Patients Reveals 12 New Disease-Causing <i>POLH</i> Mutations. Human Mutation, 2014, 35, 117-128.	2.5	41
29	Predominant role of DNA polymerase eta and p53-dependent translesion synthesis in the survival of ultraviolet-irradiated human cells. Nucleic Acids Research, 2017, 45, 1270-1280.	14.5	40
30	A Backup Role of DNA Polymerase κ in Ig Gene Hypermutation Only Takes Place in the Complete Absence of DNA Polymerase η. Journal of Immunology, 2009, 182, 6353-6359.	0.8	37
31	Effect of the anti-neoplastic drug doxorubicin on XPD-mutated DNA repair-deficient human cells. DNA Repair, 2010, 9, 40-47.	2.8	35
32	Familial predisposition to TP53/complex karyotype MDS and leukemia in DNA repair-deficient xeroderma pigmentosum. Blood, 2019, 133, 2718-2724.	1.4	31
33	Unexpected extradermatological findings in 31 patients with xeroderma pigmentosum type C. British Journal of Dermatology, 2013, 168, 1109-1113.	1.5	30
34	DNA damage and gene therapy of xeroderma pigmentosum, a human DNA repair-deficient disease. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2015, 776, 2-8.	1.0	29
35	UVSSA and USP7: new players regulating transcription-coupled nucleotide excision repair in human cells. Genome Medicine, 2012, 4, 44.	8.2	26
36	Safe Selection of Genetically Manipulated Human Primary Keratinocytes with Very High Growth Potential Using CD24. Molecular Therapy, 2007, 15, 2186-2193.	8.2	25

Alain Sarasin

#	Article	IF	CITATIONS
37	A genetic cluster of patients with variant xeroderma pigmentosum with two different founder mutations. British Journal of Dermatology, 2017, 176, 1270-1278.	1.5	23
38	Overexpression of matrix metalloproteinase 1 in dermal fibroblasts from DNA repair-deficient/cancer-prone xeroderma pigmentosum group C patients. Oncogene, 2008, 27, 5223-5232.	5.9	22
39	The key role of UVA-light induced oxidative stress in human Xeroderma Pigmentosum Variant cells. Free Radical Biology and Medicine, 2019, 131, 432-442.	2.9	20
40	XPC deficiency increases risk of hematologic malignancies through mutator phenotype and characteristic mutational signature. Nature Communications, 2020, 11, 5834.	12.8	17
41	Increased risk of internal tumors in DNA repair-deficient xeroderma pigmentosum patients: analysis of four international cohorts. Orphanet Journal of Rare Diseases, 2022, 17, 104.	2.7	17
42	NK Cell and Fibroblast-Mediated Regulation of Skin Squamous Cell Carcinoma Invasion by CLEC2A Is Compromised in Xeroderma Pigmentosum. Journal of Investigative Dermatology, 2020, 140, 1723-1732.	0.7	15
43	Molecular analysis of glioma and skin-tumour alterations in a xeroderma-pigmentosum child. , 1999, 81, 345-350.		14
44	Psychological correlates of adherence to photoprotection in a rare disease: International survey of people with Xeroderma Pigmentosum. British Journal of Health Psychology, 2019, 24, 668-686.	3.5	14
45	Xeroderma pigmentosum in South Africa: Evidence for a prevalent founder effect. British Journal of Dermatology, 2019, 181, 1070-1072.	1.5	9
46	Diagnosis of Xeroderma pigmentosum variant in a young patient with two novel mutations in the <i>POLH</i> gene. American Journal of Medical Genetics, Part A, 2017, 173, 2511-2516.	1.2	8
47	Large deletions in immunoglobulin genes are associated with a sustained absence of DNA Polymerase η. Scientific Reports, 2020, 10, 1311.	3.3	7
48	How history and geography may explain the distribution in the Comorian archipelago of a novel mutation in DNA repair-deficient xeroderma pigmentosum patients. Genetics and Molecular Biology, 2020, 43, e20190046.	1.3	7
49	The xeroderma pigmentosum variant in a Greek patient. International Journal of Dermatology, 2001, 40, 442-445.	1.0	6
50	Aberrant C-terminal domain of polymerase η targets the functional enzyme to the proteosomal degradation pathway. DNA Repair, 2015, 29, 154-165.	2.8	6
51	Human cancer and DNA repair-deficient diseases. Cancer Detection and Prevention, 1997, 21, 406-11.	2.1	5
52	DNA repair pathways and associated human diseases. Biochimie, 2003, 85, 1041.	2.6	4
53	XPC and POLH/XPV Genes Mutated in a Genetic Cluster of Xeroderma Pigmentosum Patients in Northeast Brazil. Frontiers in Genetics, 2021, 12, 784963.	2.3	3
54	The Iberian legacy into a young genetic xeroderma pigmentosum cluster in central Brazil. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2020, 852, 503164.	1.7	2

#	Article	IF	CITATIONS
55	Xeroderma Pigmentosum: When the Sun Is the Enemy. , 2018, , 562-562.		0