
Juan Colmenero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3564018/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Disentangling Component Dynamics in an All-Polymer Nanocomposite Based on Single-Chain Nanoparticles by Quasielastic Neutron Scattering. Macromolecules, 2022, 55, 2320-2332.	2.2	5
2	Disentangling Self-Atomic Motions in Polyisobutylene by Molecular Dynamics Simulations. Polymers, 2021, 13, 670.	2.0	1
3	Reaching the Ideal Class in Polymer Spheres: Thermodynamics and Vibrational Density of States. Physical Review Letters, 2021, 126, 118004.	2.9	19
4	Dynamic Processes and Mechanisms Involved in Relaxations of Single-Chain Nano-Particle Melts. Polymers, 2021, 13, 2316.	2.0	5
5	Advances in the Multi-Orthogonal Folding of Single Polymer Chains into Single-Chain Nanoparticles. Polymers, 2021, 13, 293.	2.0	10
6	Collective Motions and Mechanical Response of a Bulk of Single-Chain Nano-Particles Synthesized by Click-Chemistry. Polymers, 2021, 13, 50.	2.0	7
7	Unraveling the coherent dynamic structure factor of liquid water at the mesoscale by molecular dynamics simulations. Journal of Chemical Physics, 2021, 155, 244509.	1.2	11
8	Modeling the high frequency mechanical relaxation of simplified industrial polymer mixtures using dielectric relaxation results. Polymer, 2020, 187, 122051.	1.8	6
9	Water dynamics and self-assembly of single-chain nanoparticles in concentrated solutions. Soft Matter, 2020, 16, 9738-9745.	1.2	4
10	Concentration Fluctuations and Nanosegregation in a Simplified Industrial Blend with Large Dynamic Asymmetry. Macromolecules, 2020, 53, 7150-7160.	2.2	6
11	Structure and Dynamics of Irreversible Single-Chain Nanoparticles in Dilute Solution. A Neutron Scattering Investigation. Macromolecules, 2020, 53, 8068-8082.	2.2	7
12	Insight into the Structure and Dynamics of Polymers by Neutron Scattering Combined with Atomistic Molecular Dynamics Simulations. Polymers, 2020, 12, 3067.	2.0	17
13	Signature of hydrogen bonding association in the dielectric signal of polyalcohols. Journal of Molecular Liquids, 2020, 318, 114215.	2.3	4
14	Insights into the non-exponential behavior of the dielectric Debye-like relaxation in monoalcohols. Journal of Molecular Liquids, 2020, 312, 113441.	2.3	8
15	Tube Dilation in Isofrictional Polymer Blends Based on Polyisoprene with Different Topologies: Combination of Dielectric and Rheological Spectroscopy, Pulsed-Field-Gradient NMR, and Neutron Spin Echo (NSE) Techniques. Macromolecules, 2020, 53, 5919-5936.	2.2	8
16	Single-chain nanoparticles: opportunities provided by internal and external confinement. Materials Horizons, 2020, 7, 2292-2313.	6.4	72
17	Melts of single-chain nanoparticles: A neutron scattering investigation. Journal of Applied Physics, 2020, 127, .	1.1	11
18	Coherent structural relaxation of water from meso- to intermolecular scales measured using neutron spectroscopy with polarization analysis. Physical Review Research, 2020, 2, .	1.3	26

#	Article	IF	CITATIONS
19	Direct Observation of Dynamic Tube Dilation in Entangled Polymer Blends: A Combination of Neutron Scattering and Dielectric Techniques. Physical Review Letters, 2019, 123, 187802.	2.9	8
20	Mesoscale Dynamics in Melts of Single-Chain Polymeric Nanoparticles. Macromolecules, 2019, 52, 6935-6942.	2.2	17
21	Effect of Molecular Crowding on Conformation and Interactions of Single-Chain Nanoparticles. Macromolecules, 2019, 52, 4295-4305.	2.2	16
22	Glass-Transition Dynamics of Mixtures of Linear Poly(vinyl methyl ether) with Single-Chain Polymer Nanoparticles: Evidence of a New Type of Nanocomposite Materials. Polymers, 2019, 11, 533.	2.0	8
23	Brushes of elastic single-chain nanoparticles on flat surfaces. Polymer, 2019, 169, 207-214.	1.8	6
24	Polymer chain diffusion in polymer blends: A theoretical interpretation based on a memory function formalism. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 1239-1245.	2.4	2
25	Facile Access to Completely Deuterated Singleâ€Chain Nanoparticles Enabled by Intramolecular Azide Photodecomposition. Macromolecular Rapid Communications, 2019, 40, 1900046.	2.0	15
26	Crowding the Environment of Single-Chain Nanoparticles: A Combined Study by SANS and Simulations. Macromolecules, 2018, 51, 1573-1585.	2.2	31
27	Effect of chain stiffness on the structure of single-chain polymer nanoparticles. Journal of Physics Condensed Matter, 2018, 30, 034001.	0.7	15
28	Multimodal character of shear viscosity response in hydrogen bonded liquids. Physical Chemistry Chemical Physics, 2018, 20, 27758-27765.	1.3	19
29	Relaxation Processes in Liquids and Class-Forming Systems: What Can We Learn by Comparing Neutron Scattering and Dielectric Spectroscopy Results?. Advances in Dielectrics, 2018, , 247-277.	1.2	1
30	Local Domain Size in Single-Chain Polymer Nanoparticles. ACS Omega, 2018, 3, 8648-8654.	1.6	17
31	Applying Polymer Blend Dynamics Concepts to a Simplified Industrial System. A Combined Effort by Dielectric Spectroscopy and Neutron Scattering. Macromolecules, 2018, 51, 6692-6706.	2.2	11
32	Ultrafiltration of single-chain polymer nanoparticles through nanopores and nanoslits. Polymer, 2018, 148, 61-67.	1.8	9
33	Folding Single Chains to Single-Chain Nanoparticles via Reversible Interactions: What Size Reduction Can One Expect?. Macromolecules, 2017, 50, 1732-1739.	2.2	49
34	The Role of the Topological Constraints in the Chain Dynamics in All-Polymer Nanocomposites. Macromolecules, 2017, 50, 1719-1731.	2.2	31
35	On the non-exponentiality of the dielectric Debye-like relaxation of monoalcohols. Journal of Chemical Physics, 2017, 146, 114502.	1.2	22
36	Complex nonequilibrium dynamics of stacked polystyrene films deep in the glassy state. Journal of Chemical Physics, 2017, 146, 203312.	1.2	33

#	Article	IF	CITATIONS
37	Reaching the ideal glass transition by aging polymer films. Physical Chemistry Chemical Physics, 2017, 19, 961-965.	1.3	44
38	Supramolecular Self-Assembly of Monocarboxydecyl-Terminated Dimethylsiloxane Oligomer. Macromolecules, 2017, 50, 8688-8697.	2.2	7
39	Investigation of the dynamics of aqueous proline solutions using neutron scattering and molecular dynamics simulations. Physical Chemistry Chemical Physics, 2017, 19, 27739-27754.	1.3	10
40	Size of Elastic Single-Chain Nanoparticles in Solution and on Surfaces. Macromolecules, 2017, 50, 6323-6331.	2.2	23
41	Cooling Rate Dependent Glass Transition in Thin Polymer Films and in Bulk. , 2016, , 403-431.		21
42	A Solventâ€Based Strategy for Tuning the Internal Structure of Metalloâ€Folded Singleâ€Chain Nanoparticles. Macromolecular Rapid Communications, 2016, 37, 1060-1065.	2.0	39
43	Structure and component dynamics in binary mixtures of poly(2-(dimethylamino)ethyl methacrylate) with water and tetrahydrofuran: A diffraction, calorimetric, and dielectric spectroscopy study. Journal of Chemical Physics, 2016, 144, 154903.	1.2	5
44	Dielectric relaxation analysis of hybrid acrylic–polyurethane gels. Materials Today Communications, 2016, 8, 100-107.	0.9	1
45	Dynamics and Structure of Poly(ethylene oxide) Intercalated in the Nanopores of Resorcinol–Formaldehyde Resin Nanoparticles. Macromolecules, 2016, 49, 5704-5713.	2.2	8
46	Structure and dynamics of single-chain nano-particles in solution. Polymer, 2016, 105, 532-544.	1.8	44
47	Dielectric relaxation of polymers: segmental dynamics under structural constraints. Soft Matter, 2016, 12, 7709-7725.	1.2	64
48	An unexpected route to aldehyde-decorated single-chain nanoparticles from azides. Polymer Chemistry, 2016, 7, 6570-6574.	1.9	12
49	Dielectric Susceptibility of Liquid Water: Microscopic Insights from Coherent and Incoherent Neutron Scattering. Physical Review Letters, 2016, 117, 185501.	2.9	55
50	Tunable slow dynamics in a new class of soft colloids. Soft Matter, 2016, 12, 9039-9046.	1.2	12
51	Universal Trend of the Non-Exponential Rouse Mode Relaxation in Glass-Forming Polymers Systems: Experimental Facts, MD-Simulation Results and a Theoretical Approach Based on a Generalized Langevin Equation. MRS Advances, 2016, 1, 1903-1913.	0.5	1
52	A Useful Methodology for Determining the Compaction Degree of Singleâ€Chain Nanoparticles by Conventional SEC. Particle and Particle Systems Characterization, 2016, 33, 373-381.	1.2	10
53	Role of Dynamic Asymmetry on the Collective Dynamics of Comblike Polymers: Insights from Neutron Spin-Echo Experiments and Coarse-Grained Molecular Dynamics Simulations. Macromolecules, 2016, 49, 4989-5000.	2.2	6
54	Concentrated Solutions of Single-Chain Nanoparticles: A Simple Model for Intrinsically Disordered Proteins under Crowding Conditions. Journal of Physical Chemistry Letters, 2016, 7, 838-844.	2.1	64

#	Article	IF	CITATIONS
55	Single Chain Dynamic Structure Factor of Linear Polymers in an All-Polymer Nano-Composite. Macromolecules, 2016, 49, 2354-2364.	2.2	36
56	Effect of nanostructure on the thermal glass transition and physical aging in polymer materials. Progress in Polymer Science, 2016, 54-55, 128-147.	11.8	123
57	Dynamics of tetrahydrofuran as minority component in a mixture with poly(2-(dimethylamino)ethyl) Tj ETQq1 1 (Physics, 2015, 143, 094505.).784314 1.2	rgBT /Overloo 4
58	Efficient Synthesis of Single-Chain Globules Mimicking the Morphology and Polymerase Activity of Metalloenzymes. Macromolecular Rapid Communications, 2015, 36, 1592-1597.	2.0	52
59	Collective dynamics of glass-forming polymers at intermediate length scales. EPJ Web of Conferences, 2015, 83, 01001.	0.1	8
60	Are polymers standard glass-forming systems? The role of intramolecular barriers on the glass-transition phenomena of glass-forming polymers. Journal of Physics Condensed Matter, 2015, 27, 103101.	0.7	32
61	Dielectric relaxations of Acrylic-Polyurethane hybrid materials. Polymer, 2015, 74, 21-29.	1.8	10
62	The universal trend of the non-exponential Rouse mode relaxation in polymer systems: a theoretical interpretation based on a generalized Langevin equation. Soft Matter, 2015, 11, 5614-5618.	1.2	3
63	Influence of Solvent on Poly(2-(Dimethylamino)Ethyl Methacrylate) Dynamics in Polymer-Concentrated Mixtures: A Combined Neutron Scattering, Dielectric Spectroscopy, and Calorimetric Study. Macromolecules, 2015, 48, 6724-6735.	2.2	16
64	Dielectric relaxation of 2-ethyl-1-hexanol around the glass transition by thermally stimulated depolarization currents. Journal of Chemical Physics, 2015, 142, 214504.	1.2	15
65	Simulation guided design of globular single-chain nanoparticles by tuning the solvent quality. Soft Matter, 2015, 11, 1369-1375.	1.2	58
66	Non-exponential Rouse correlators and generalized magnitudes probing chain dynamics. Journal of Non-Crystalline Solids, 2015, 407, 302-308.	1.5	6
67	Intercalation and Confinement of Poly(ethylene oxide) in Porous Carbon Nanoparticles with Controlled Morphologies. Macromolecules, 2014, 47, 8729-8737.	2.2	12
68	Neutron Spectroscopy as a Probe of Macromolecular Structure and Dynamics under Extreme Spatial Confinement. Journal of Physics: Conference Series, 2014, 549, 012009.	0.3	4
69	Polymer Chain Dynamics: Evidence of Nonexponential Mode Relaxation Using Thermally Stimulated Depolarization Current Techniques. Physical Review Letters, 2014, 113, 078302.	2.9	25
70	Chain Dynamics on Crossing the Glass Transition: Nonequilibrium Effects and Recovery of the Temperature Dependence of the Structural Relaxation. ACS Macro Letters, 2014, 3, 1215-1219.	2.3	12
71	Efficient Route to Compact Single-Chain Nanoparticles: Photoactivated Synthesis via Thiol–Yne Coupling Reaction. Macromolecules, 2014, 47, 8270-8280.	2.2	77
72	Accounting for the thickness dependence of the Tg in supported PS films via the volume holes diffusion model. Thermochimica Acta, 2014, 575, 233-237.	1.2	33

#	Article	IF	CITATIONS
73	Dielectric spectroscopy at the nanoscale by atomic force microscopy: A simple model linking materials properties and experimental response. Journal of Applied Physics, 2014, 115, .	1.1	15
74	Collective Features in Polyisobutylene. A Study of the Static and Dynamic Structure Factor by Molecular Dynamics Simulations. Macromolecules, 2014, 47, 447-459.	2.2	15
75	Single-chain nanoparticles vs. star, hyperbranched and dendrimeric polymers: effect of the nanoscopic architecture on the flow properties of diluted solutions. Soft Matter, 2014, 10, 9454-9459.	1.2	13
76	Multi-orthogonal folding of single polymer chains into soft nanoparticles. Soft Matter, 2014, 10, 4813-4821.	1.2	43
77	Microscopic Dynamics in Nanocomposites of Poly(ethylene oxide) and Poly(methyl methacrylate) Soft Nanoparticles: A Quasi-Elastic Neutron Scattering Study. Macromolecules, 2014, 47, 304-315.	2.2	28
78	How Far Are Single-Chain Polymer Nanoparticles in Solution from the Globular State?. ACS Macro Letters, 2014, 3, 767-772.	2.3	152
79	Investigation of a Nanocomposite of 75 wt % Poly(methyl methacrylate) Nanoparticles with 25 wt % Poly(ethylene oxide) Linear Chains: A Quasielatic Neutron Scattering, Calorimetric, and WAXS Study. Macromolecules, 2014, 47, 3005-3016.	2.2	18
80	Metallo-Folded Single-Chain Nanoparticles with Catalytic Selectivity. ACS Macro Letters, 2014, 3, 439-443.	2.3	130
81	Component dynamics in nanostructured PI-PDMS diblock copolymers with PI segregated in lamellas, cylinders, and spheres. Colloid and Polymer Science, 2014, 292, 1863-1876.	1.0	13
82	AFM based dielectric spectroscopy: Extended frequency range through excitation of cantilever higher eigenmodes. Ultramicroscopy, 2014, 146, 55-61.	0.8	9
83	Dynamic study of polystyrene-block-poly(4-vinylpyridine) copolymer in bulk and confined in cylindrical nanopores. Polymer, 2014, 55, 4057-4066.	1.8	19
84	Thermal Stability of Polymers Confined in Graphite Oxide. Macromolecules, 2013, 46, 1890-1898.	2.2	32
85	Direct Evidence of Two Equilibration Mechanisms in Glassy Polymers. Physical Review Letters, 2013, 111, 095701.	2.9	166
86	Endowing Single-Chain Polymer Nanoparticles with Enzyme-Mimetic Activity. ACS Macro Letters, 2013, 2, 775-779.	2.3	129
87	Physical aging in polymers and polymer nanocomposites: recent results and open questions. Soft Matter, 2013, 9, 8619.	1.2	206
88	Confinement of poly(ethylene oxide) in the nanometer-scale pores of resins and carbon nanoparticles. Soft Matter, 2013, 9, 10960.	1.2	13
89	Chain Length Effects on the Dynamics of Poly(ethylene oxide) Confined in Graphite Oxide: A Broadband Dielectric Spectroscopy Study. Macromolecules, 2013, 46, 7932-7939.	2.2	35
90	Comment on "Unified explanation of the anomalous dynamic properties of highly asymmetric polymer blends―[J. Chem. Phys. 138, 054903 (2013)]. Journal of Chemical Physics, 2013, 138, 197101.	1.2	9

#	Article	IF	CITATIONS
91	Modeling the collective relaxation time of glass-forming polymers at intermediate length scales: Application to polyisobutylene. Journal of Chemical Physics, 2013, 139, 044906.	1.2	26
92	Study of the Dynamic Heterogeneity in Poly(ethylene- <i>ran</i> -vinyl acetate) Copolymer by Using Broadband Dielectric Spectroscopy and Electrostatic Force Microscopy. Macromolecules, 2013, 46, 7502-7512.	2.2	11
93	End-to-End Vector Dynamics of Nonentangled Polymers in Lamellar Block Copolymer Melts: The Role of Junction Point Motion. Macromolecules, 2013, 46, 7477-7487.	2.2	11
94	Reply to "Comment on â€~A Generalized Rouse Incoherent Scattering Function for Chain Dynamics of Unentangled Polymers in Dynamically Asymmetric Blends'― Macromolecules, 2013, 46, 8056-8058.	2.2	2
95	Recent progress on polymer dynamics by neutron scattering: From simple polymers to complex materials. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 87-113.	2.4	56
96	Advantages of Orthogonal Folding of Single Polymer Chains to Soft Nanoparticles. Macromolecules, 2013, 46, 9748-9759.	2.2	89
97	Local mechanical and dielectric behavior of the interacting polymer layer in silica nano-particles filled SBR by means of AFM-based methods. Polymer, 2013, 54, 4980-4986.	1.8	42
98	Influence of Water and Filler Content on the Dielectric Response of Silica-Filled Rubber Compounds. Macromolecules, 2013, 46, 2407-2416.	2.2	42
99	"Michael―Nanocarriers Mimicking Transient-Binding Disordered Proteins. ACS Macro Letters, 2013, 2, 491-495.	2.3	106
100	A Generalized Rouse Incoherent Scattering Function for Chain Dynamics of Unentangled Polymers in Dynamically Asymmetric Blends. Macromolecules, 2013, 46, 5363-5370.	2.2	12
101	Effect of Nanoconfinement on Polymer Dynamics: Surface Layers and Interphases. Physical Review Letters, 2013, 110, 108303.	2.9	154
102	Volume recovery of polystyrene/silica nanocomposites. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 847-853.	2.4	15
103	Dynamic Heterogeneity in Random and Gradient Copolymers: A Computational Investigation. Macromolecules, 2013, 46, 5066-5079.	2.2	32
104	Dynamics of Poly(butylene oxide) Well above the Glass Transition. A Fully Atomistic Molecular Dynamics Simulation Study. Macromolecules, 2013, 46, 1678-1685.	2.2	10
105	Design and Preparation of Single hain Nanocarriers Mimicking Disordered Proteins for Combined Delivery of Dermal Bioactive Cargos. Macromolecular Rapid Communications, 2013, 34, 1681-1686.	2.0	82
106	Applicability of mode-coupling theory to polyisobutylene: A molecular dynamics simulation study. Physical Review E, 2013, 88, 042302.	0.8	13
107	On the interactions between poly(ethylene oxide) and graphite oxide: A comparative study by different computational methods. Journal of Chemical Physics, 2013, 138, 094308.	1.2	7
108	Time dependence of the segmental relaxation time of poly(vinyl acetate)-silica nanocomposites. Physical Review E, 2012, 86, 041501.	0.8	34

#	Article	IF	CITATIONS
109	Three-dimensional tomography of single charge inside dielectric materials using electrostatic force microscopy. Materials Research Society Symposia Proceedings, 2012, 1421, 1.	0.1	2
110	Tunable uptake of poly(ethylene oxide) by graphite-oxide-based materials. Carbon, 2012, 50, 5232-5241.	5.4	22
111	Anomalous molecular weight dependence of chain dynamics in unentangled polymer blends with strong dynamic asymmetry. Soft Matter, 2012, 8, 3739.	1.2	20
112	Quasielastic Neutron Scattering Study on the Dynamics of Poly(alkylene oxide)s. Macromolecules, 2012, 45, 4394-4405.	2.2	40
113	Single Chain Dynamic Structure Factor of Poly(ethylene oxide) in Dynamically Asymmetric Blends with Poly(methyl methacrylate). Neutron Scattering and Molecular Dynamics Simulations. Macromolecules, 2012, 45, 536-542.	2.2	36
114	Two-Dimensional Subnanometer Confinement of Ethylene Glycol and Poly(ethylene oxide) by Neutron Spectroscopy: Molecular Size Effects. Macromolecules, 2012, 45, 3137-3144.	2.2	41
115	Dynamical behavior of highly concentrated trehalose water solutions: a dielectric spectroscopy study. Physical Chemistry Chemical Physics, 2012, 14, 2991.	1.3	9
116	Tg depression and invariant segmental dynamics in polystyrene thin films. Soft Matter, 2012, 8, 5119.	1.2	173
117	Easy-dispersible poly(glycidyl phenyl ether)-functionalized graphene sheets obtained by reaction of "living―anionic polymer chains. Chemical Communications, 2012, 48, 2618.	2.2	12
118	Dielectric spectroscopy in the GHz region on fully hydrated zwitterionic amino acids. Physical Chemistry Chemical Physics, 2012, 14, 11352.	1.3	56
119	Enthalpy Recovery in Nanometer to Micrometer Thick Polystyrene Films. Macromolecules, 2012, 45, 5296-5306.	2.2	86
120	Unexpected PDMS Behavior in Segregated Cylindrical and Spherical Nanophases of PS–PDMS Asymmetric Diblock Copolymers. Macromolecules, 2012, 45, 491-502.	2.2	17
121	Macromolecular Structure and Vibrational Dynamics of Confined Poly(ethylene oxide): From Subnanometer 2D-Intercalation into Graphite Oxide to Surface Adsorption onto Graphene Sheets. ACS Macro Letters, 2012, 1, 550-554.	2.3	38
122	Dielectric Study of Hydration Water in Silica Nanoparticles. Journal of Physical Chemistry C, 2012, 116, 24340-24349.	1.5	89
123	Short and Intermediate Range Order in Poly(alkylene oxide)s. A Neutron Diffraction and Molecular Dynamics Simulation Study. Macromolecules, 2012, 45, 7293-7303.	2.2	29
124	Dynamics of Water Absorbed in Polyamides. Macromolecules, 2012, 45, 1676-1687.	2.2	61
125	Neutron Scattering and X-ray Investigation of the Structure and Dynamics of Poly(ethyl) Tj ETQq1 1 0.784314 rg	BT /Overlo	ock 10 Tf 50
126	Component dynamics in polyvinylpyrrolidone concentrated aqueous solutions. Journal of Chemical	1.2	36

Physics, 2012, 137, 084902.

#	Article	IF	CITATIONS
127	Heterogeneity of the Segmental Dynamics in Cylindrical and Spherical Phases of Diblock Copolymers. Macromolecules, 2012, 45, 8841-8852.	2.2	15
128	Positron annihilation and relaxation dynamics from dielectric spectroscopy: poly(vinylmethylether). Journal of Physics Condensed Matter, 2012, 24, 155104.	0.7	13
129	Neutron scattering and molecular dynamics simulations: synergetic tools to unravel structure and dynamics in polymers. Soft Matter, 2012, 8, 8257.	1.2	35
130	Enhanced physical aging of polymer nanocomposites: The key role of the area to volume ratio. Polymer, 2012, 53, 1362-1372.	1.8	63
131	Complex polymers. Neutron Scattering Applications and Techniques, 2012, , 103-121.	0.2	1
132	Chain dynamics in nonentangled polymer melts: A first-principle approach for the role of intramolecular barriers. Soft Matter, 2011, 7, 1364.	1.2	9
133	International Soft Matter Conference 2010. Soft Matter, 2011, 7, 1245.	1.2	1
134	Structural and thermodynamic aspects of the cylinder-to-sphere transition in amphiphilic diblock copolymer micelles. Soft Matter, 2011, 7, 1491.	1.2	36
135	From caging to Rouse dynamics in polymer melts with intramolecular barriers: A critical test of the mode coupling theory. Journal of Chemical Physics, 2011, 134, 024523.	1.2	16
136	Enthalpy Recovery of Glassy Polymers: Dramatic Deviations from the Extrapolated Liquidlike Behavior. Macromolecules, 2011, 44, 8333-8342.	2.2	95
137	Heterogeneity of the Segmental Dynamics in Lamellar Phases of Diblock Copolymers. Macromolecules, 2011, 44, 6952-6961.	2.2	34
138	Glassy Dynamics of Polystyrene by Quasielastic Neutron Scattering. Macromolecules, 2011, 44, 3161-3168.	2.2	20
139	Site-Dependent Segmental Dynamics Revealed Using Broadband Dielectric Spectroscopy on Well-Defined Functionalized Polystyrenes. Macromolecules, 2011, 44, 7810-7819.	2.2	9
140	Effect of Blending on the Chain Dynamics of the "Low- <i>T</i> _g ―Component in Nonentangled and Dynamically Asymmetric Polymer Blends. Macromolecules, 2011, 44, 3611-3621.	2.2	29
141	Dynamics of Water in Supercooled Aqueous Solutions of Poly(propylene glycol) As Studied by Broadband Dielectric Spectroscopy and Low-Temperature FTIR-ATR Spectroscopy. Journal of Physical Chemistry B, 2011, 115, 13817-13827.	1.2	17
142	Chain Dynamics of Unentangled Poly(ethylene- <i>alt</i> -propylene) Melts by Means of Neutron Scattering and Fully Atomistic Molecular Dynamics Simulations. Macromolecules, 2011, 44, 3129-3139.	2.2	16
143	Structure and Dynamics of Self-Assembled Comb Copolymers: Comparison between Simulations of a Generic Model and Neutron Scattering Experiments. Macromolecules, 2011, 44, 1695-1706.	2.2	27
144	Equilibrium Chain Exchange Kinetics of Diblock Copolymer Micelles: Effect of Morphology. Macromolecules, 2011, 44, 6145-6154.	2.2	62

#	Article	IF	CITATIONS
145	Contrast inversion in electrostatic force microscopy imaging of trapped charges: tip–sample distance and dielectric constant dependence. Nanotechnology, 2011, 22, 345702.	1.3	10
146	Dynamical Properties of Plasticizer in Polyvinyl Acetate. , 2011, , .		0
147	Physical aging of polystyrene/gold nanocomposites and its relation to the calorimetric Tg depression. Soft Matter, 2011, 7, 3607.	1.2	89
148	On the Apparent SEC Molecular Weight and Polydispersity Reduction upon Intramolecular Collapse of Polydisperse Chains to Unimolecular Nanoparticles. Macromolecules, 2011, 44, 8644-8649.	2.2	49
149	Physical aging in PMMA/silica nanocomposites: Enthalpy and dielectric relaxation. Journal of Non-Crystalline Solids, 2011, 357, 605-609.	1.5	35
150	Polymers under extreme two-dimensional confinement: Poly(ethylene oxide) in graphite oxide. Soft Matter, 2011, 7, 7173.	1.2	46
151	Revisiting the effects of organic solvents on the thermal reduction of graphite oxide. Thermochimica Acta, 2011, 526, 65-71.	1.2	10
152	Broadband nanodielectric spectroscopy by means of amplitude modulation electrostatic force microscopy (AM-EFM). Ultramicroscopy, 2011, 111, 1366-1369.	0.8	25
153	Broadband dielectric spectroscopy and calorimetric investigations of d-lyxose. Carbohydrate Research, 2011, 346, 2165-2172.	1.1	10
154	Compatibility studies of polystyrene and poly(vinyl acetate) blends using electrostatic force microscopy. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 1332-1338.	2.4	5
155	A Nanotechnology Pathway to Arresting Phase Separation in Soft Nanocomposites. Macromolecular Rapid Communications, 2011, 32, 573-578.	2.0	22
156	Broadband Dielectric Spectroscopic, Calorimetric, and FTIRâ€ATR Investigations of <scp>D</scp> â€Arabinose Aqueous Solutions. ChemPhysChem, 2011, 12, 3624-3633.	1.0	9
157	On the use of electrostatic force microscopy as a quantitative subsurface characterization technique: A numerical study. Applied Physics Letters, 2011, 99, 023101.	1.5	16
158	Static and dynamic contributions to anomalous chain dynamics in polymer blends. Journal of Physics Condensed Matter, 2011, 23, 234119.	0.7	3
159	Numerical study of the lateral resolution in electrostatic force microscopy for dielectric samples. Nanotechnology, 2011, 22, 285705.	1.3	18
160	Determining concentration depth profiles in fluorinated networks by means of electric force microscopy. Journal of Chemical Physics, 2011, 135, 064704.	1.2	4
161	Free volume holes diffusion to describe physical aging in poly(mehtyl methacrylate)/silica nanocomposites. Journal of Chemical Physics, 2011, 135, 014901.	1.2	62
162	Effect of hydration on the dielectric properties of C-S-H gel. Journal of Chemical Physics, 2011, 134, 034509.	1.2	49

#	Article	IF	CITATIONS
163	The free volume of poly(vinyl methylether) as computed in a wide temperature range and at length scales up to the nanoregion. Journal of Chemical Physics, 2011, 134, 044512.	1.2	10
164	Study of the structure and dynamics of poly(vinyl pyrrolidone) by molecular dynamics simulations validated by quasielastic neutron scattering and x-ray diffraction experiments. Journal of Chemical Physics, 2011, 134, 054904.	1.2	21
165	Positron annihilation and relaxation dynamics from dielectric spectroscopy and nuclear magnetic resonance: <i>Cis–trans-</i> 1,4-poly(butadiene). Journal of Chemical Physics, 2011, 134, 164507.	1.2	19
166	Quasielastic neutron scattering study of hydrogen motions in an aqueous poly(vinyl methyl ether) solution. Journal of Chemical Physics, 2011, 134, 204906.	1.2	37
167	PDMS behaviour under confinement in strongly segregated mesophases of PS-PDMS diblock copolymers. European Physical Journal: Special Topics, 2010, 189, 257-261.	1.2	9
168	High and low molecular weight crossovers in the longest relaxation time dependence of linear cis-1,4 polyisoprene by dielectric relaxations. Rheologica Acta, 2010, 49, 507-512.	1.1	17
169	A Versatile "Click―Chemistry Precursor of Functional Polystyrene Nanoparticles. Advanced Materials, 2010, 22, 3038-3041.	11.1	66
170	Nanoscale dielectric properties of insulating thin films: From single point measurements to quantitative images. Ultramicroscopy, 2010, 110, 634-638.	0.8	20
171	Permanent adsorption of organic solvents in graphite oxide and its effect on the thermal exfoliation. Carbon, 2010, 48, 1079-1087.	5.4	103
172	Sorption and desorption behavior of water and organic solvents from graphite oxide. Carbon, 2010, 48, 3277-3286.	5.4	97
173	Imaging dielectric relaxation in nanostructured polymers by frequency modulation electrostatic force microscopy. Applied Physics Letters, 2010, 96, 213110.	1.5	47
174	Nanodielectric mapping of a model polystyrene-poly(vinyl acetate) blend by electrostatic force microscopy. Physical Review E, 2010, 81, 010801.	0.8	53
175	Neutron Scattering and Polymer Dynamics. Neutron News, 2010, 21, 11-14.	0.1	1
176	Effect of silica particles concentration on the physical aging of PMMAâ^•silica nanocomposites. AIP Conference Proceedings, 2010, , .	0.3	7
177	Chain dynamics of poly(ethylene-alt-propylene) melts by means of coarse-grained simulations based on atomistic molecular dynamics. Journal of Chemical Physics, 2010, 132, 024904.	1.2	18
178	Comparison of Calorimetric and Dielectric Single Component Glass Transitions in PtBSâ^'Pl Blends. Macromolecules, 2010, 43, 6406-6413.	2.2	17
179	Enthalpy Recovery of PMMA/Silica Nanocomposites. Macromolecules, 2010, 43, 7594-7603.	2.2	63
180	Dynamics in Poly(<i>n</i> -alkyl methacrylates): A Neutron Scattering, Calorimetric, and Dielectric Study. Macromolecules, 2010, 43, 3107-3119.	2.2	53

#	Article	IF	CITATIONS
181	Segmental and Normal Mode Relaxation of Poly(alkylene oxide)s Studied by Dielectric Spectroscopy and Rheology. Macromolecules, 2010, 43, 4968-4977.	2.2	43
182	Chain Motion in Nonentangled Dynamically Asymmetric Polymer Blends: Comparison between Atomistic Simulations of PEO/PMMA and a Generic Beadâ^'Spring Model. Macromolecules, 2010, 43, 3036-3051.	2.2	44
183	Direct Observation of Confined Single Chain Dynamics by Neutron Scattering. Physical Review Letters, 2010, 104, 197801.	2.9	123
184	Dielectric relaxation of various end-functionalized polystyrenes: Plastification effects versus specific dynamics. Journal of Non-Crystalline Solids, 2010, 356, 676-679.	1.5	12
185	Positron annihilation response and broadband dielectric spectroscopy: Poly(propylene glycol). Journal of Non-Crystalline Solids, 2010, 356, 782-786.	1.5	10
186	Water dynamics in poly(vinyl pyrrolidone)–water solution before and after isothermal crystallization. Journal of Non-Crystalline Solids, 2010, 356, 3037-3041.	1.5	12
187	Kinetic Study of the Graphite Oxide Reduction: Combined Structural and Gravimetric Experiments under Isothermal and Nonisothermal Conditions. Journal of Physical Chemistry C, 2010, 114, 21645-21651.	1.5	52
188	Dynamics of Water Intercalated in Graphite Oxide. Journal of Physical Chemistry C, 2010, 114, 2604-2612.	1.5	202
189	Accelerated physical aging in PMMA/silica nanocomposites. Soft Matter, 2010, 6, 3306.	1.2	72
190	Polymer dynamics under soft confinement in a self-assembled system. Soft Matter, 2010, 6, 1559.	1.2	32
191	The dynamical behavior of hydrated glutathione: a model for protein–water interactions. Physical Chemistry Chemical Physics, 2010, 12, 10512.	1.3	16
192	Dielectric properties of thin insulating layers measured by Electrostatic Force Microscopy. EPJ Applied Physics, 2010, 50, 10501.	0.3	5
193	The free-volume structure of a polymer melt, poly(vinyl methylether) from molecular dynamics simulations and cavity analysis. Journal of Chemical Physics, 2009, 131, 064903.	1.2	18
194	Determination of the nanoscale dielectric constant by means of a double pass method using electrostatic force microscopy. Journal of Applied Physics, 2009, 106, .	1.1	73
195	Characterization of the "simple-liquid―state in a polymeric system: Coherent and incoherent scattering functions. Physical Review E, 2009, 80, 041805.	0.8	24
196	High pressure dynamics of polymer/plasticizer mixtures. Journal of Chemical Physics, 2009, 131, 044906.	1.2	12
197	Dynamical heterogeneity in binary mixtures of low-molecular-weight glass formers. Physical Review E, 2009, 80, 041505.	0.8	17
198	The role of intramolecular barriers on the glass transition of polymers: Computer simulations versus mode coupling theory. Journal of Chemical Physics, 2009, 131, 204502.	1.2	20

#	Article	IF	CITATIONS
199	Effects of losartan on hepatic expression of nonphagocytic NADPH oxidase and fibrogenic genes in patients with chronic hepatitis C. American Journal of Physiology - Renal Physiology, 2009, 297, G726-G734.	1.6	110
200	Dielectric relaxations in ribose and deoxyribose supercooled water solutions. Journal of Chemical Physics, 2009, 131, 085102.	1.2	20
201	Atomic motions in poly(vinyl methyl ether): A combined study by quasielastic neutron scattering and molecular dynamics simulations in the light of the mode coupling theory. Journal of Chemical Physics, 2009, 131, 204901.	1.2	23
202	Rouse-Model-Based Description of the Dielectric Relaxation of Nonentangled Linear 1,4- <i>cis</i> -Polyisoprene. Macromolecules, 2009, 42, 8492-8499.	2.2	25
203	Polymer Dynamics of Well-Defined, Chain-End-Functionalized Polystyrenes by Dielectric Spectroscopy. Macromolecules, 2009, 42, 8875-8881.	2.2	23
204	Quasielastic Neutron Scattering and Molecular Dynamics Simulation Study on the Structure Factor of Poly(ethylene- <i>alt</i> -propylene). Macromolecules, 2009, 42, 8271-8285.	2.2	24
205	On the temperature dependence of the nonexponentiality in glass-forming liquids. Journal of Chemical Physics, 2009, 130, 124902.	1.2	36
206	Soft Confinement in Spherical Mesophases of Block Copolymer Melts. Macromolecules, 2009, 42, 8543-8556.	2.2	4
207	Neutron scattering study of the dynamics of a polymer melt under nanoscopic confinement. Journal of Chemical Physics, 2009, 131, 174901.	1.2	62
208	Study of the dynamics of poly(ethylene oxide) by combining molecular dynamic simulations and neutron scattering experiments. Journal of Chemical Physics, 2009, 130, 094908.	1.2	73
209	Structural Observation and Kinetic Pathway in the Formation of Polymeric Micelles. Physical Review Letters, 2009, 102, 188301.	2.9	84
210	Hydration Water Dynamics in Solutions of Hydrophilic Polymers, Biopolymers and Other Glass Forming Materials by Dielectric Spectroscopy. AIP Conference Proceedings, 2008, , .	0.3	1
211	Atomic motions in the αβ-merging region of 1,4-polybutadiene: A molecular dynamics simulation study. Journal of Chemical Physics, 2008, 128, 224905.	1.2	24
212	Anomalous relaxation of self-assembled alkyl nanodomains in high-order poly(n-alkyl methacrylates). Soft Matter, 2008, 4, 1792.	1.2	65
213	Dynamics of Amorphous and Semicrystalline 1,4- <i>trans</i> -Poly(isoprene) by Dielectric Spectroscopy. Macromolecules, 2008, 41, 8669-8676.	2.2	42
214	Miscible Polymer Blends with Large Dynamical Asymmetry:  A New Class of Solid-State Electrolytes?. Macromolecules, 2008, 41, 1565-1569.	2.2	7
215	Dynamical and Structural Aspects of the Cold Crystallization of Poly(dimethylsiloxane) (PDMS). Macromolecules, 2008, 41, 1364-1376.	2.2	94
216	Self-Concentration and Interfacial Fluctuation Effects on the Local Segmental Dynamics of Nanostructured Diblock Copolymer Melts. Macromolecules, 2008, 41, 511-514.	2.2	28

#	Article	IF	CITATIONS
217	Entangledlike Chain Dynamics in Nonentangled Polymer Blends with Large Dynamic Asymmetry. Physical Review Letters, 2008, 100, 126001.	2.9	29
218	Broadband dielectric investigation on poly(vinyl pyrrolidone) and its water mixtures. Journal of Chemical Physics, 2008, 128, 044901.	1.2	57
219	Dielectric relaxation of polychlorinated biphenyl/toluene mixtures: Component dynamics. Journal of Chemical Physics, 2008, 128, 224508.	1.2	23
220	Short-range order and collective dynamics of poly(vinyl acetate): A combined study by neutron scattering and molecular dynamics simulations. Journal of Chemical Physics, 2008, 129, 224903.	1.2	26
221	Neutron scattering investigation of a diluted blend of poly(ethylene oxide) in polyethersulfone. Journal of Chemical Physics, 2008, 128, 184901.	1.2	15
222	Comment on "Vibrational and configurational parts of the specific heat at glass formation― Physical Review B, 2008, 78, .	1.1	4
223	Universal features of water dynamics in solutions of hydrophilic polymers, biopolymers, and small glass-forming materials. Physical Review E, 2008, 77, 031803.	0.8	127
224	Effect of stretching on the sub-Tgphenylene-ring dynamics of polycarbonate by neutron scattering. Physical Review E, 2008, 78, 021801.	0.8	7
225	Dynamic Arrest in Polymer Melts: Competition between Packing and Intramolecular Barriers. Physical Review Letters, 2008, 101, 255701.	2.9	43
226	Adam-Gibbs based model to describe the single component dynamics in miscible polymer blends under hydrostatic pressure. Journal of Chemical Physics, 2007, 127, 154907.	1.2	14
227	"Self-concentration―effects on the dynamics of a polychlorinated biphenyl diluted in 1,4-polybutadiene. Journal of Chemical Physics, 2007, 126, 204904.	1.2	31
228	On the momentum transfer dependence of the atomic motions in the α-relaxation range. Polymers vs. Iow–molecular-weight glass-forming systems. Europhysics Letters, 2007, 80, 38001.	0.7	7
229	Tests of mode coupling theory in a simple model for two-component miscible polymer blends. Journal of Physics Condensed Matter, 2007, 19, 466112.	0.7	11
230	Anomalous relaxation in binary mixtures: a dynamic facilitation picture. Journal of Physics Condensed Matter, 2007, 19, 205144.	0.7	1
231	Atomic motions in the αβ-region of glass-forming polymers: molecular versus mode coupling theory approach. Journal of Physics Condensed Matter, 2007, 19, 205127.	0.7	14
232	Broadband dielectric study of oligomer of poly(vinyl acetate): A detailed comparison of dynamics with its polymer analog. Physical Review E, 2007, 75, 061805.	0.8	17
233	Positron-annihilation-lifetime response and broadband dielectric relaxation spectroscopy: Diethyl phthalate. Physical Review E, 2007, 76, 031503.	0.8	19
234	Polymer Chain Dynamics in a Random Environment: Heterogeneous Mobilities. Physical Review Letters, 2007, 98, 168301.	2.9	53

#	Article	IF	CITATIONS
235	Phenylene ring dynamics in phenoxy and the effect of intramolecular linkages on the dynamics of some engineering thermoplastics below the glass transition temperature. Physical Review E, 2007, 75, 051801.	0.8	8
236	Dielectric secondary relaxation and phenylene ring dynamics in bisphenol-A polycarbonate. Journal of Non-Crystalline Solids, 2007, 353, 4262-4266.	1.5	8
237	Dielectric study of the segmental relaxation of low and high molecular weight polystyrenes under hydrostatic pressure. Journal of Non-Crystalline Solids, 2007, 353, 4298-4302.	1.5	29
238	Dielectric properties of water in amorphous mixtures of polymers and other glass forming materials. Journal of Non-Crystalline Solids, 2007, 353, 4523-4527.	1.5	25
239	Segmental dynamics in miscible polymer blends: recent results and open questions. Soft Matter, 2007, 3, 1474.	1.2	159
240	Single Component Dynamics in Miscible Poly(vinyl methyl ether)/Polystyrene Blends under Hydrostatic Pressure. Macromolecules, 2007, 40, 3246-3255.	2.2	45
241	Dynamic Confinement Effects in Polymer Blends. A Quasielastic Neutron Scattering Study of the Slow Component in the Blend Poly(vinyl acetate)/Poly(ethylene oxide). Macromolecules, 2007, 40, 4568-4577.	2.2	41
242	Route to calculate the length scale for the glass transition in polymers. Physical Review E, 2007, 76, 011514.	0.8	65
243	Dynamics of confined water in different environments. European Physical Journal: Special Topics, 2007, 141, 49-52.	1.2	24
244	Describing the component dynamics in miscible polymer blends: Towards a fully predictive model. Journal of Chemical Physics, 2006, 124, 154904.	1.2	23
245	Quasielastic Neutron Scattering Study on the Effect of Blending on the Dynamics of Head-to-Head Poly(propylene) and Poly(ethyleneâ^'propylene). Macromolecules, 2006, 39, 1060-1072.	2.2	34
246	Dynamic Confinement Effects in Polymer Blends. A Quasielastic Neutron Scattering Study of the Dynamics of Poly(ethylene oxide) in a Blend with Poly(vinyl acetate). Macromolecules, 2006, 39, 3007-3018.	2.2	56
247	Local Structure of Syndiotactic Poly(methyl methacrylate). A Combined Study by Neutron Diffraction with Polarization Analysis and Atomistic Molecular Dynamics Simulations. Macromolecules, 2006, 39, 3947-3958.	2.2	45
248	Predicting the Time Scale of the Component Dynamics of Miscible Polymer Blends:Â The Polyisoprene/Poly(vinylethylene) Case. Macromolecules, 2006, 39, 7149-7156.	2.2	32
249	On the Molecular Motions Originating from the Dielectric Î ³ -Relaxation of Bisphenol-A Polycarbonate. Macromolecules, 2006, 39, 2691-2699.	2.2	29
250	Self- and Collective Dynamics of Syndiotactic Poly(methyl methacrylate). A Combined Study by Quasielastic Neutron Scattering and Atomistic Molecular Dynamics Simulations. Macromolecules, 2006, 39, 6260-6272.	2.2	45
251	Pressureâ^'Temperature Dependence of Polymer Segmental Dynamics. Comparison between the Adamâ^'Gibbs Approach and Density Scalings. Macromolecules, 2006, 39, 3931-3938.	2.2	30
252	Hydrogen dynamics in polyethersulfone: A quasielastic neutron scattering study in the high-momentum transfer region. Journal of Non-Crystalline Solids, 2006, 352, 4610-4614.	1.5	1

#	Article	IF	CITATIONS
253	Molecular motions in glassy polycarbonate below its glass transition temperature. Journal of Non-Crystalline Solids, 2006, 352, 5072-5075.	1.5	7
254	Modeling the Dynamics of Head-to-Head Polypropylene in Blends with Polyisobutylene. Macromolecules, 2006, 39, 448-450.	2.2	8
255	Logarithmic relaxation in a kinetically constrained model. Journal of Chemical Physics, 2006, 125, 016101.	1.2	13
256	Relaxation scenarios in a mixture of large and small spheres: Dependence on the size disparity. Journal of Chemical Physics, 2006, 125, 164507.	1.2	91
257	Plasticizer effect on the dynamics of polyvinylchloride studied by dielectric spectroscopy and quasielastic neutron scattering. Journal of Chemical Physics, 2006, 125, 154904.	1.2	17
258	Comment on "Pressure Dependence of Fragile-to-Strong Transition and a Possible Second Critical Point in Supercooled Confined Water― Physical Review Letters, 2006, 97, 189802; discussion 189803.	2.9	55
259	A thermodynamic approach to the fragility of glass-forming polymers. Journal of Chemical Physics, 2006, 124, 024906.	1.2	43
260	Anomalous dynamic arrest in a mixture of large and small particles. Physical Review E, 2006, 74, 021409.	0.8	90
261	Is there a higher-order mode coupling transition in polymer blends?. Journal of Chemical Physics, 2006, 124, 184906.	1.2	46
262	Neutron scattering investigations on methyl group dynamics in polymers. Progress in Polymer Science, 2005, 30, 1147-1184.	11.8	75
263	The decisive influence of local chain dynamics on the overall dynamic structure factor close to the glass transition. Europhysics Letters, 2005, 71, 262-268.	0.7	13
264	Relationship between dynamics and thermodynamics in glass-forming polymers. Europhysics Letters, 2005, 70, 614-620.	0.7	57
265	Dynamics of poly(ethylene oxide) in a blend with poly(methyl methacrylate): A quasielastic neutron scattering and molecular dynamics simulations study. Physical Review E, 2005, 72, 031808.	0.8	92
266	Heterogeneous dynamics of poly(vinyl acetate) far above Tg: A combined study by dielectric spectroscopy and quasielastic neutron scattering. Journal of Chemical Physics, 2005, 122, 244909.	1.2	62
267	Sub-Tg dynamics in polycarbonate by neutron scattering and its relation with secondary $\hat{1}^3$ relaxation. Journal of Chemical Physics, 2005, 123, 014907.	1.2	26
268	Dynamics of Polyethersulfone Phenylene Rings:Â A Quasielastic Neutron Scattering Study. Macromolecules, 2005, 38, 3999-4013.	2.2	21
269	Dielectric Investigation of the Low-Temperature Water Dynamics in the Poly(vinyl methyl ether)/H2O System. Macromolecules, 2005, 38, 7056-7063.	2.2	100
270	Partial Structure Factors in 1,4-Polybutadiene. A Combined Neutron Scattering and Molecular Dynamics Simulations Study. Macromolecules, 2005, 38, 9847-9853.	2.2	22

#	Article	IF	CITATIONS
271	Correlation between temperature–pressure dependence of the α-relaxation and configurational entropy for a glass-forming polymer. Journal of Non-Crystalline Solids, 2005, 351, 2616-2621.	1.5	30
272	Inelastic neutron scattering for investigating the dynamics of confined glass-forming liquids. Journal of Non-Crystalline Solids, 2005, 351, 2657-2667.	1.5	51
273	Effect of cold-drawing on the secondary dielectric relaxation of bisphenol-A polycarbonate. Journal of Non-Crystalline Solids, 2005, 351, 2652-2656.	1.5	4
274	Combining configurational entropy and self-concentration to describe the component dynamics in miscible polymer blends. Journal of Chemical Physics, 2005, 123, 144908.	1.2	52
275	Neutron Spin Echo in Polymer Systems. , 2005, , .		142
276	Neutron Spin Echo in Polymer Systems, Chapter 1. , 2005, , 1-221.		33
277	Self-Atomic Motions in Class-Forming Polymers: Neutron Scattering and Molecular Dynamics Simulations Results. AIP Conference Proceedings, 2004, , .	0.3	0
278	Hydrogen motions in the α-relaxation regime of poly(vinyl ethylene): A molecular dynamics simulation and neutron scattering study. Journal of Chemical Physics, 2004, 121, 3282-3294.	1.2	26
279	Phenylene ring dynamics in bisphenol-A-polysulfone by neutron scattering. Journal of Chemical Physics, 2004, 120, 423-436.	1.2	20
280	Intermediate Length Scale Dynamics in Polymer Melts. AIP Conference Proceedings, 2004, , .	0.3	0
281	Neutron Scattering and Dielectric Study on the Structural and Dynamical Peculiar Properties of Poly(vinyl chloride). AIP Conference Proceedings, 2004, , .	0.3	0
282	Direct observation of the crossover from \hat{I}_{\pm} -relaxation to Rouse dynamics in a polymer melt. Europhysics Letters, 2004, 66, 239-245.	0.7	23
283	Hydrogen motions and the α-relaxation in glass-forming polymers: Molecular dynamics simulation and quasi-elastic neutron scattering results. Pramana - Journal of Physics, 2004, 63, 25-32.	0.9	13
284	Crossover from Rouse dynamics to the α-relaxation in poly (vinyl ethylene). Pramana - Journal of Physics, 2004, 63, 33-40.	0.9	3
285	Self-motion of protons in the α-relaxation of poly(vinyl ethylene): a neutron scattering and MD-simulation study. Physica B: Condensed Matter, 2004, 350, E1091-E1093.	1.3	1
286	Molecular motions in a polymer membrane: a time-of-flight study on poly(ether sulfone). Physica B: Condensed Matter, 2004, 350, E893-E895.	1.3	2
287	Microscopic dynamics in some engineering thermoplastics and a polymer membrane. Physica B: Condensed Matter, 2004, 350, E971-E973.	1.3	4
288	Glassy dynamics of polysulfone by quasielastic neutron scattering: from 10â^'13 to. Physica B: Condensed Matter, 2004, 350, 211-213.	1.3	3

#	Article	IF	CITATIONS
289	Structure factors in polystyrene: a neutron scattering and MD-simulation study. Physica B: Condensed Matter, 2004, 350, E881-E884.	1.3	28
290	Heterogeneity of the Segmental Dynamics of Poly(dimethylsiloxane) in a Diblock Lamellar Mesophase:Â Dielectric Relaxation Investigations. Macromolecules, 2004, 37, 7808-7817.	2.2	46
291	Methyl group dynamics in a confined glass. European Physical Journal E, 2003, 12, 43-46.	0.7	10
292	Segmental order and dynamics of polymer chains confined in block copolymer lamellar mesophases: NMR and dielectric relaxation studies. European Physical Journal E, 2003, 12, 121-125.	0.7	4
293	Self-confined polymer dynamics in miscible binary blends. European Physical Journal E, 2003, 12, 127-130.	0.7	16
294	Short-time dynamics of phenylene-rings in bisphenol based engineering thermoplastics. Chemical Physics, 2003, 292, 363-370.	0.9	6
295	Intermediate length scale dynamics in glass forming polymers: coherent and incoherent quasielastic neutron scattering results on polyisobutylene. Chemical Physics, 2003, 292, 295-309.	0.9	21
296	Partial Structure Factors of Polyisoprene:Â Neutron Scattering and Molecular Dynamics Simulation. Macromolecules, 2003, 36, 238-248.	2.2	32
297	Segmental Dynamics in Miscible Polymer Blends:Â Modeling the Combined Effects of Chain Connectivity and Concentration Fluctuations. Macromolecules, 2003, 36, 7280-7288.	2.2	74
298	Experimental evidence by neutron scattering of a crossover from Gaussian to non-Gaussian behavior in the α relaxation of polyisoprene. Physical Review E, 2003, 67, 051802.	0.8	82
299	Out of equilibrium dynamics of poly(vinyl methyl ether) segments in miscible poly(styrene)-poly(vinyl) Tj ETQq1	1 0,78431 0.8	4 rgBT /Overl
300	Self-motion and the Â-relaxation in glass-forming polymers. Molecular dynamic simulation and quasielastic neutron scattering results in polyisoprene. Journal of Physics Condensed Matter, 2003, 15, S1127-S1138.	0.7	18
301	Modelling segmental dynamics in miscible polymer blends. Macromolecular Symposia, 2003, 198, 19-28.	0.4	1
302	Polymer Dynamics by Dielectric Spectroscopy and Neutron Scattering $\hat{a} \in$ " a Comparison. , 2003, , 685-718.		2
303	Intermediate length scale dynamics of polyisobutylene. Physical Review E, 2002, 65, 051803.	0.8	80
304	Methyl-group dynamics from tunneling to hopping inNaCH3CO2â‹3H2O:Comparison between a crystal and its glassy counterpart. Physical Review B, 2002, 65, .	1.1	10
305	Non-Gaussian Nature of theαRelaxation of Glass-Forming Polyisoprene. Physical Review Letters, 2002, 89, 245701.	2.9	92
306	Heterogeneous structure of poly(vinyl chloride) as the origin of anomalous dynamical behavior. Journal of Chemical Physics, 2002, 117, 1336-1350.	1.2	33

#	Article	IF	CITATIONS
307	Temperatureâ^'Pressure Equivalence for the Component Segmental Dynamics of a Miscible Polymer Blend. Macromolecules, 2002, 35, 2030-2035.	2.2	42
308	Self-motion and the α relaxation in a simulated glass-forming polymer: Crossover from Gaussian to non-Gaussian dynamic behavior. Physical Review E, 2002, 65, 041804.	0.8	121
309	Partial structure factors of a simulated polymer melt. Computational Materials Science, 2002, 25, 596-605.	1.4	5
310	Quantitative Study of Chain Connectivity Inducing Effective Glass Transition Temperatures in Miscible Polymer Blends. Macromolecules, 2002, 35, 5587-5590.	2.2	67
311	Component dynamics in polymer blends: a combined QENS and dielectric spectroscopy investigation. Applied Physics A: Materials Science and Processing, 2002, 74, s442-s444.	1.1	7
312	Neutron scattering on partially deuterated polybutadiene. Applied Physics A: Materials Science and Processing, 2002, 74, s371-s373.	1.1	3
313	Methyl group dynamics in a glass and its crystalline counterpart by neutron scattering. Applied Physics A: Materials Science and Processing, 2002, 74, s424-s426.	1.1	2
314	Secondary relaxation in two engineering thermoplastics by neutron scattering and dielectric spectroscopy. Applied Physics A: Materials Science and Processing, 2002, 74, s454-s456.	1.1	8
315	The rotational barrier for methyl group dynamics in anhydrous sodium acetate. Applied Physics A: Materials Science and Processing, 2002, 74, s1351-s1353.	1.1	0
316	Experimental aspects of polymer dynamics. Polymer International, 2002, 51, 1211-1218.	1.6	3
317	Dynamics of Glass Forming Polymers by Neutron Spin Echo. Lecture Notes in Physics, 2002, , 268-279.	0.3	2
318	Merging of the Dielectric $\hat{I}\pm$ and \hat{I}^2 Relaxations in Glass-Forming Polymers. Macromolecules, 2001, 34, 503-513.	2.2	77
319	The distribution of tunnelling frequencies for methyl group rotation in poly(vinyl acetate). Journal of Non-Crystalline Solids, 2001, 287, 242-245.	1.5	4
320	Neutron scattering and the glass transition in polymers – present status and future opportunities. Journal of Non-Crystalline Solids, 2001, 287, 286-296.	1.5	14
321	Methyl Group Dynamics in Poly(methyl methacrylate):  From Quantum Tunneling to Classical Hopping. Macromolecules, 2001, 34, 4886-4896.	2.2	33
322	Methyl group dynamics in glassy toluene: A neutron scattering study. Journal of Chemical Physics, 2001, 115, 8958-8966.	1.2	20
323	Methyl group dynamics in glassy systems: Crossover from quantum to classical regime. Physical Review B, 2001, 63, .	1.1	10
324	Response to "Comment on â€~From Rouse dynamics to local relaxation: A neutron spin echo study on polyisobutylene melts' ―[J. Chem. Phys. 113, 11396 (2000)]. Journal of Chemical Physics, 2000, 113, 11398-11399.	1.2	8

#	Article	IF	CITATIONS
325	Interpretation of the TSDC fractional polarization experiments on the ?-relaxation of polymers. Journal of Polymer Science, Part B: Polymer Physics, 2000, 38, 2105-2113.	2.4	29
326	Methyl group dynamics in glassy polymers by neutron scattering: from classical to quantum motions. Physica B: Condensed Matter, 2000, 276-278, 322-325.	1.3	7
327	Methyl group rotational tunnelling in glasses: a direct comparison with the crystal. Physica B: Condensed Matter, 2000, 276-278, 361-362.	1.3	11
328	Fast dynamics in poly(vinyl chloride) below the glass transition: self and pair correlation functions. Physica B: Condensed Matter, 2000, 276-278, 440-441.	1.3	1
329	Methyl group dynamics above the glass transition temperature: a molecular dynamics simulation in polyisoprene. Chemical Physics, 2000, 261, 47-59.	0.9	22
330	Origin of Dynamic Heterogeneities in Miscible Polymer Blends: A Quasielastic Neutron Scattering Study. Physical Review Letters, 2000, 85, 772-775.	2.9	59
331	Origin of the Distribution of Potential Barriers for Methyl Group Dynamics in Glassy Polymers:Â A Molecular Dynamics Simulation in Polyisoprene. Macromolecules, 2000, 33, 8077-8084.	2.2	34
332	Relajación secundaria en sistemas formadores de vidrios. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2000, 39, 371-373.	0.9	0
333	On the origin of the distribution of potential barriers for methyl group dynamics in glassy polymers: Neutron scattering & MD-simulations. , 1999, , .		1
334	Space time observation of the -process in polymers by quasielastic neutron scattering. Journal of Physics Condensed Matter, 1999, 11, A297-A306.	0.7	22
335	On the origin of the non-exponential behaviour of the -relaxation in glass-forming polymers: incoherent neutron scattering and dielectric relaxation results. Journal of Physics Condensed Matter, 1999, 11, A363-A370.	0.7	50
336	Arbeet al.Reply:. Physical Review Letters, 1999, 82, 1336-1336.	2.9	19
337	Dielectric investigation of the temperature dependence of the nonexponentiality of the dynamics of polymer melts. Physical Review E, 1999, 59, 6888-6895.	0.8	50
338	Reply to "Comment on â€~Merging of the α and β relaxations in polybutadiene: A neutron spin echo and dielectric study' ― Physical Review E, 1999, 60, 1103-1105.	0.8	31
339	From Rouse dynamics to local relaxation: A neutron spin echo study on polyisobutylene melts. Journal of Chemical Physics, 1999, 111, 6107-6120.	1.2	78
340	lsotope effect on the rotational tunneling transitions of methyl groups in glassy polymers. Physical Review B, 1999, 59, 5983-5986.	1.1	27
341	Segmental Dynamics in Poly(vinylethylene)/Polyisoprene Miscible Blends Revisited. A Neutron Scattering and Broad-Band Dielectric Spectroscopy Investigation. Macromolecules, 1999, 32, 7572-7581.	2.2	104
342	Effect of Blending on the PVME Dynamics. A Dielectric, NMR, and QENS Investigation. Macromolecules, 1999, 32, 4065-4078.	2.2	134

#	Article	IF	CITATIONS
343	The spin-glass transition: exponents and dynamics. Physica A: Statistical Mechanics and Its Applications, 1998, 257, 21-27.	1.2	3
344	Study of interchain structural correlations in glassy polymers by X-ray diffraction. Journal of Non-Crystalline Solids, 1998, 232-234, 377-382.	1.5	4
345	Fast-dynamics in plasticized poly(vinyl chloride). Journal of Non-Crystalline Solids, 1998, 235-237, 169-172.	1.5	6
346	Effect of blending on the methyl side group dynamics in poly(vinyl methyl ether). Journal of Non-Crystalline Solids, 1998, 235-237, 233-236.	1.5	19
347	Dielectric relaxation in PMMA revisited. Journal of Non-Crystalline Solids, 1998, 235-237, 580-583.	1.5	78
348	Quantum Rotational Tunneling of Methyl Groups in Polymers. Physical Review Letters, 1998, 80, 2350-2353.	2.9	70
349	Investigation of the Dielectric β-Process in Polyisobutylene by Incoherent Quasielastic Neutron Scattering. Macromolecules, 1998, 31, 4926-4934.	2.2	44
350	Molecular Motions in Polyisobutylene:Â A Neutron Spin-Echo and Dielectric Investigation. Macromolecules, 1998, 31, 1133-1143.	2.2	110
351	Methyl Group Dynamics in Poly(vinyl acetate):  A Neutron Scattering Study. Macromolecules, 1998, 31, 3985-3993.	2.2	54
352	Dynamics of Glass-Forming Polymers: "Homogeneous―versus "Heterogeneous―Scenario. Physical Review Letters, 1998, 81, 590-593.	2.9	160
353	The merging of the dielectric α- and β-relaxations in poly-(methyl methacrylate). Journal of Chemical Physics, 1998, 109, 7546-7555.	1.2	176
354	Carbon-carbon torsional barriers driving the fast dynamics in glass-forming polymers. Physical Review B, 1998, 57, 13508-13513.	1.1	41
355	Crossover from Independent to Cooperative Segmental Dynamics in Polymers: Experimental Realization in Poly(Vinyl Chloride). Physical Review Letters, 1997, 78, 1928-1931.	2.9	69
356	The short time regime of segmental dynamics of glassâ€forming polymers. Macromolecular Symposia, 1997, 121, 133-146.	0.4	2
357	Study of the Two-Component Segmental Dynamics of Poly(vinylethylene)/Polyisoprene Miscible Blends. Macromolecules, 1997, 30, 597-604.	2.2	66
358	α-Relaxation in the Glass-Transition Range of Amorphous Polymers. 2. Influence of Physical Aging on the Dielectric Relaxation. Macromolecules, 1997, 30, 3881-3887.	2.2	66
359	Summary of conference presentations: Glasses, biology, polymers, chemistry, liquids. Physica B: Condensed Matter, 1997, 234-236, 1236-1238.	1.3	0
360	Coherent quasielastic scattering from internal relaxations in polymers. Physica B: Condensed Matter, 1997, 234-236, 437-441.	1.3	7

#	Article	IF	CITATIONS
361	Dynamic structure factors due to relaxation processes in glass-forming polymers. Physica B: Condensed Matter, 1997, 241-243, 1005-1012.	1.3	13
362	QENS investigation of the segmental dynamics of a PVME/dPS miscible polymer blend. Physica B: Condensed Matter, 1997, 234-236, 442-444.	1.3	3
363	Secondary and Segmental Relaxation in Polybutadienes of Varying Microstructure:Â Dielectric Relaxation Results. Macromolecules, 1996, 29, 129-134.	2.2	72
364	Fast Dynamics in Glass-Forming Polymers Revisited. Materials Research Society Symposia Proceedings, 1996, 455, 17.	0.1	0
365	Dynamics at the Glass Transition in Polymers: Results from Neutron Spectroscopy. Materials Research Society Symposia Proceedings, 1996, 455, 3.	0.1	1
366	On the interpretation of the TSDC results in the study of the α-relaxation of amorphous polymers. Polymer, 1996, 37, 2915-2923.	1.8	40
367	Irreversibility of structural changes induced by stretching in poly(vinyl chloride). Macromolecular Chemistry and Physics, 1996, 197, 991-1005.	1.1	11
368	Study of the Dynamic Structure Factor in theβRelaxation Regime of Polybutadiene. Physical Review Letters, 1996, 76, 1872-1875.	2.9	88
369	The coalescence range of the α and β processes in the glassâ€forming liquid bisâ€phenolâ€Câ€dimethylether (BCDE). Journal of Chemical Physics, 1996, 105, 432-439.	1.2	28
370	Merging of the α and β relaxations in polybutadiene: A neutron spin echo and dielectric study. Physical Review E, 1996, 54, 3853-3869.	0.8	257
371	The dynamics of glass-forming polymers in the microscopic-mesoscopic time scale. A quasielastic neutron scattering phenomenological approach. Macromolecular Symposia, 1995, 94, 105-120.	0.4	2
372	X-ray diffraction study of the influence of temperature on the structural correlations of poly(2-hydroxypropyl ether of bisphenol A). Polymer, 1995, 36, 3625-3631.	1.8	12
373	Neutron scattering study of the picosecond dynamics of polybutadiene and polyisoprene. Physical Review E, 1995, 52, 781-795.	0.8	192
374	A new method for obtaining distributions of relaxation times from frequency relaxation spectra. Journal of Chemical Physics, 1995, 103, 798-806.	1.2	35
375	Anomalous Dynamical Homogeneity of the Dielectric α-Relaxation in Miscible Polymer Blends of Poly(epichlorohydrin) and Poly(vinyl methyl ether). Macromolecules, 1995, 28, 8819-8823.	2.2	35
376	alphaRelaxation in the Glass Transition Range of Amorphous Polymers. 1. Temperature Behavior. across the Glass transition. Macromolecules, 1995, 28, 1516-1527.	2.2	120
377	Segmental Dynamics in Bulk Poly(isobornyl methacrylate) and Its Random Copolymer with Poly(methyl) Tj ETQq1	1.0,78433 2.2	14 rgBT /Ove
378	Non-Lorentzian Rayleigh spectra of bulk homopolymers far above the glass transition. Physical Review B, 1994, 49, 14996-15003.	1.1	16

22

#	Article	IF	CITATIONS
379	Sub-Tg molecular motions in glassy poly(vinyl chloride). Influence of the nucleophilic substitution. Journal of Polymer Science, Part B: Polymer Physics, 1994, 32, 871-880.	2.4	12
380	Observation of the Component Dynamics in a Miscible Polymer Blend by Dielectric and Mechanical Spectroscopies. Macromolecules, 1994, 27, 4486-4492.	2.2	186
381	The dynamics of the α- and β-relaxations in glass-forming polymers studied by quasielastic neutron scattering and dielectric spectroscopy. Journal of Non-Crystalline Solids, 1994, 172-174, 126-137.	1.5	54
382	Q-dependence pf the relaxation times of the α-relaxation as observed by quasielastic neutron scattering. Journal of Non-Crystalline Solids, 1994, 172-174, 229-233.	1.5	27
383	Influence of conformational microstructure in the molecular motions of poly(vinyl chloride). Journal of Non-Crystalline Solids, 1994, 172-174, 955-960.	1.5	3
384	Miscibility and dielectric α-relaxation of PECH/PVME polymer blends. Journal of Non-Crystalline Solids, 1994, 172-174, 961-965.	1.5	19
385	Detailed correspondences between dielectric and mechanical relaxations in poly(vinylethylene). Macromolecules, 1994, 27, 407-410.	2.2	52
386	Methyl Group Dynamics in Poly(vinyl methyl ether). A Rotation Rate Distribution Model. Macromolecules, 1994, 27, 3282-3288.	2.2	78
387	Dynamics of the α-relaxation in glass-forming polymers. Study by neutron scattering and relaxation techniques. Physica A: Statistical Mechanics and Its Applications, 1993, 201, 38-51.	1.2	27
388	Fast dynamics below and around the glass transition in a sidegroup polymer (PVME). Physica A: Statistical Mechanics and Its Applications, 1993, 201, 101-105.	1.2	7
389	Comparative study of "β-relaxations―in a glass-forming polymer (PVC) by dielectric spectroscopy and quasielastic neutron scattering. Physica A: Statistical Mechanics and Its Applications, 1993, 201, 447-452.	1.2	13
390	Interconnection between frequency-domain Havriliak-Negami and time-domain Kohlrausch-Williams-Watts relaxation functions. Physical Review B, 1993, 47, 125-130.	1.1	203
391	Crossover from Debye to non-Debye dynamical behavior of the α relaxation observed by quasielastic neutron scattering in a glass-forming polymer. Physical Review Letters, 1993, 71, 2603-2606.	2.9	194
392	Extended Kronmüller model for cooperative relaxations in metallic glasses. Physical Review B, 1993, 47, 5041-5046.	1.1	4
393	Non-Debye dielectric relaxation around the liquid-glass transition of a glass-forming polymer. Physical Review B, 1993, 47, 14857-14865.	1.1	41
394	Relaxation behaviour in bulk PIMA and PIMA-PMMA copolymer near T g. , 1993, , 20-23.		0
395	Segmental dynamics in polymer melts by relaxation techniques and quasielastic neutron scattering. Physica Scripta, 1993, T49A, 227-232.	1.2	7
396	Dynamics of the α-relaxation in glass-forming polymeric systems. Study by neutron scattering and relaxation techniques. , 1993, , 24-27.		4

#	Article	IF	CITATIONS
397	Correlation between non-Debye behavior andQbehavior of the α relaxation in glass-forming polymeric systems. Physical Review Letters, 1992, 69, 478-481.	2.9	169
398	Interpretation of anomalous momentum transfer dependences of local chain motion of polymers observed by quasielastic incoherent neutron scattering experiments. Macromolecules, 1992, 25, 6727-6729.	2.2	51
399	Temperature and momentum transfer dependence of the dynamics of the α-relaxation in polymer melts. Physica B: Condensed Matter, 1992, 182, 369-375.	1.3	11
400	Dynamic mechanical study of four amorphous polymers around and above the glass transition: breakdown of the time-temperature superposition principle in the frame of the coupling model. Macromolecules, 1991, 24, 5196-5202.	2.2	22
401	Relationship between the time-domain Kohlrausch-Williams-Watts and frequency-domain Havriliak-Negami relaxation functions. Physical Review B, 1991, 44, 7306-7312.	1.1	632
402	Dielectric relaxation and physical aging in polar glassy polymers. Journal of Non-Crystalline Solids, 1991, 131-133, 457-461.	1.5	10
403	α-relaxation and molecular dynamics in glass-forming polymeric systems. Journal of Non-Crystalline Solids, 1991, 131-133, 860-869.	1.5	21
404	Dynamics of the α-process of polymer systems on a microscopical timescale. Neutron and nuclear magnetic resonance study. Journal of Non-Crystalline Solids, 1991, 131-133, 949-954.	1.5	9
405	Dynamics of the α relaxation of a glass-forming polymeric system: Dielectric, mechanical, nuclear-magnetic-resonance, and neutron-scattering studies. Physical Review B, 1991, 44, 7321-7329.	1.1	104
406	Title is missing!. Die Makromolekulare Chemie, 1989, 190, 893-905.	1.1	12
407	Title is missing!. Die Makromolekulare Chemie, 1989, 190, 3257-3267.	1.1	15
408	Compensation laws and phase segregation in polymer blends. Solid State Communications, 1989, 69, 707-711.	0.9	10
409	Dielectric Relaxation Behaviour Around the Glass-Transition of Polar Polymeric Systems. Springer Proceedings in Physics, 1989, , 53-57.	0.1	1
410	Power law and the viscosity of supercooled glass-forming metallic systems. Physical Review B, 1988, 38, 798-801.	1.1	3
411	Simultaneous evaluation of viscosity and retardation time in glassy polymers by a parallelâ€plate technique. Journal of Applied Physics, 1988, 64, 642-646.	1.1	3
412	Relaxations and molecular motions in the glassâ€ŧransition region of glassy polymers. Makromolekulare Chemie Macromolecular Symposia, 1988, 20-21, 397-408.	0.6	8
413	Dynamic mechanical behaviour of a polysulfone in the glass transition region. Makromolekulare Chemie Macromolecular Symposia, 1988, 20-21, 451-460.	0.6	0
414	Parallel-plate viscometry of amorphous polymers in the range 104 to 1010 Pa s. , 1988, , 159-161.		0

#	Article	IF	CITATIONS
415	New secondary relaxation in polymeric glasses: A possible common feature of the glassy state. Physical Review B, 1987, 35, 3995-4000.	1.1	45
416	Theoretical interpretation of activation energies associated with the glass transition, obtained from td or DSC experiments. Journal of Thermal Analysis, 1987, 32, 623-635.	0.7	2
417	Compensation laws and \hat{l}^2 -relaxation in poly(vinyl chloride). Polymer Bulletin, 1987, 17, 489-495.	1.7	9
418	Viscosity and relaxation times temperature behaviour above the glass transition in some glassy polymers. Polymer Bulletin, 1987, 18, 39.	1.7	6
419	Determining viscosity temperature behavior of four amorphous thermoplastics using a parallel plate technique. Polymer Engineering and Science, 1987, 27, 810-815.	1.5	11
420	Thermally stimulated depolarization current (TSDC) study of molecular motions in the glass-transition region of polyarylate (PAr). Polymer, 1986, 27, 1771-1776.	1.8	27
421	Relationship between relaxation time and viscosity above the glass-transition in two glassy polymers (polyarylate and polysulfone). Journal of Polymer Science, Part C: Polymer Letters, 1986, 24, 399-402.	0.7	8
422	Study of the α and β relaxations on a commercial poly(vinyl chloride) by thermally stimulated creep and depolarization current techniques. Journal of Applied Physics, 1986, 59, 3829-3834.	1.1	54
423	Dielectric properties of polyarylate (PAr) around the glass transition. Polymer, 1985, 26, 913-917.	1.8	18
424	DSC Study of cold rolled metallic glasses. Thermochimica Acta, 1985, 85, 179-182.	1.2	0
425	Sub Tg enthalpy relaxation in glasses. Thermochimica Acta, 1985, 85, 183-186.	1.2	3
426	Dielectric Relaxation at the Glass Transition as a Free Volume Process. II. A Continuous Distribution of Relaxation Times. Physica Status Solidi (B): Basic Research, 1984, 125, 409-419.	0.7	8
427	Dielectric Relaxation at the Glass Transition as a Free Volume Process. A Single Relaxation Time Approach. Physica Status Solidi (B): Basic Research, 1983, 120, 349-360.	0.7	27
428	Free volume driven crystallization in metallic glasses. Thermochimica Acta, 1983, 63, 255-260.	1.2	8
429	Thermally stimulated currents in poly(vinyl chloride): Tacticity and molecular weight influence. Journal of Macromolecular Science - Physics, 1983, 22, 645-663.	0.4	11
430	Frequency and temperature dependence of dielectric losses in PVC around the glass transition. , 1983, ,		0
431	The possibility of determining the Avrami—Erofeev index from non-isothermal measurements. Thermochimica Acta, 1982, 55, 367-371.	1.2	8
432	Continuous cooling approximation for the formation of a glass. Journal of Non-Crystalline Solids, 1981, 46, 277-287.	1.5	96

#	Article	IF	CITATIONS
433	Thermal properties and crystallization processes in semiconducting AlAsTe glasses. Physica Status Solidi A, 1980, 62, 323-330.	1.7	15
434	Theoretical considerations concerning avrami transformations under non-isothermal conditions. Thermochimica Acta, 1980, 35, 381-384.	1.2	33
435	Crystallization of Al23Te77 glasses. Journal of Non-Crystalline Solids, 1979, 30, 263-271.	1.5	172
436	Polymer Rheology by Dielectric Spectroscopy. , 0, , .		3
437	Comment on "Anomalous structural recovery in the near glass transition range in a polymer glass: Data revisited in light of temperature variability in vacuum ovenâ€based experimentsâ€: Polymer Engineering and Science, 0, , .	1.5	1