Michela Osnato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3563728/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fantastic four: bHLH factors and the making of the pollen. Plant Cell, 2022, , .	6.6	1
2	Not too short and not too long: SMAX1 optimizes hypocotyl length at warmer temperature. Plant Cell, 2022, , .	6.6	0
3	Transcriptome analysis reveals rice MADS13 as an important repressor of the carpel development pathway in ovules. Journal of Experimental Botany, 2021, 72, 398-414.	4.8	7
4	The floral repressors TEMPRANILLO1 and 2 modulate salt tolerance by regulating hormonal components and photoâ€protection in <i>Arabidopsis</i> . Plant Journal, 2021, 105, 7-21.	5.7	11
5	Comparative genomics in <i>Chlamydomonas</i> : understanding the past, envisioning the future. Plant Cell, 2021, 33, 790-791.	6.6	1
6	Searching for the link between telomere length and life history traits in plants. Plant Cell, 2021, 33, 1087-1088.	6.6	0
7	Expansin helps maize to keep the right timing: inducible expression of an Expansin gene mitigates drought effects on grain yields. Plant Cell, 2021, 33, 1857-1858.	6.6	2
8	A COMPASS to guide vegetative growth and the floral transition. Plant Cell, 2021, 33, 3179-3180.	6.6	1
9	OUP accepted manuscript. Plant Cell, 2021, 33, 3604-3605.	6.6	1
10	Photoperiod Control of Plant Growth: Flowering Time Genes Beyond Flowering. Frontiers in Plant Science, 2021, 12, 805635.	3.6	38
11	Genes of the <i>RAV</i> Family Control Heading Date and Carpel Development in Rice. Plant Physiology, 2020, 183, 1663-1680.	4.8	25
12	<scp>TEMPRANILLO</scp> is a direct repressor of the micro <scp>RNA</scp> miR172. Plant Journal, 2019, 100, 522-535.	5.7	24
13	Gene expression profiling of reproductive meristem types in early rice inflorescences by laser microdissection. Plant Journal, 2016, 86, 75-88.	5.7	56
14	TEMPRANILLO Reveals the Mesophyll as Crucial for Epidermal Trichome Formation. Plant Physiology, 2016, 170, 1624-1639.	4.8	39
15	Interaction between the <i>GROWTH-REGULATING FACTOR</i> and <i>KNOTTED1-LIKE HOMEOBOX</i> Families of Transcription Factors Â. Plant Physiology, 2014, 164, 1952-1966.	4.8	143
16	The Ins and Outs of the Rice AGAMOUS Subfamily. Molecular Plant, 2013, 6, 650-664.	8.3	29
17	TEMPRANILLO genes link photoperiod and gibberellin pathways to control flowering in Arabidopsis. Nature Communications, 2012, 3, 808.	12.8	170
18	Cross Talk between the KNOX and Ethylene Pathways Is Mediated by Intron-Binding Transcription Factors in Barley Â. Plant Physiology, 2010, 154, 1616-1632.	4.8	51

#	ARTICLE	IF	CITATIONS
19	Overexpression of the riceOsmyb4gene increases chilling and freezing tolerance ofArabidopsis thalianaplants. Plant Journal, 2004, 37, 115-127.	5.7	314
20	Novel dwarfing alleles for the next green revolution: Mutations in <i>DTL</i> and <i>OSH15</i> alter internode elongation and grain size in rice. Plant Cell, 0, , .	6.6	0