
Carmen-Lisset Flores

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3563557/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The N-Acetylglucosamine Kinase from Yarrowia lipolytica Is a Moonlighting Protein. International Journal of Molecular Sciences, 2021, 22, 13109.	4.1	1
2	Construction and characterization of a Saccharomyces cerevisiae strain able to grow on glucosamine as sole carbon and nitrogen source. Scientific Reports, 2018, 8, 16949.	3.3	7
3	The Expanding Landscape of Moonlighting Proteins in Yeasts. Microbiology and Molecular Biology Reviews, 2016, 80, 765-777.	6.6	57
4	The Gene YALI0E20207g from Yarrowia lipolytica Encodes an N-Acetylglucosamine Kinase Implicated in the Regulated Expression of the Genes from the N-Acetylglucosamine Assimilatory Pathway. PLoS ONE, 2015, 10, e0122135.	2.5	7
5	The repressor Rgt1 and the cAMP-dependent protein kinases control the expression of the SUC2 gene in Saccharomyces cerevisiae. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 1362-1367.	2.4	14
6	Evolution of moonlighting proteins: insight from yeasts. Biochemical Society Transactions, 2014, 42, 1715-1719.	3.4	13
7	An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae. Microbial Cell Factories, 2012, 11, 131.	4.0	76
8	Disruption of Yarrowia lipolytica TPS1 Gene Encoding Trehalose-6-P Synthase Does Not Affect Growth in Glucose but Impairs Growth at High Temperature. PLoS ONE, 2011, 6, e23695.	2.5	23
9	Unraveling moonlighting functions with yeasts. IUBMB Life, 2011, 63, 457-462.	3.4	24
10	Moonlighting Proteins in Yeasts. Microbiology and Molecular Biology Reviews, 2008, 72, 197-210.	6.6	138
11	The Gluconeogenic Enzyme Fructose-1,6-Bisphosphatase Is Dispensable for Growth of the Yeast <i>Yarrowia lipolytica</i> in Gluconeogenic Substrates. Eukaryotic Cell, 2008, 7, 1742-1749.	3.4	21
12	The dimorphic yeast Yarrowia lipolytica possesses an atypical phosphofructokinase: characterization of the enzyme and its encoding gene. Microbiology (United Kingdom), 2005, 151, 1465-1474.	1.8	16
13	Yarrowia lipolytica Mutants Devoid of Pyruvate Carboxylase Activity Show an Unusual Growth Phenotype. Eukaryotic Cell, 2005, 4, 356-364.	3.4	21
14	Mitochondrial Localization of the Mevalonate Pathway Enzyme 3-Hydroxy-3-methyl-glutaryl-CoA Reductase in the Trypanosomatidae. Molecular Biology of the Cell, 2004, 15, 1356-1363.	2.1	43
15	The importance of a functional trehalose biosynthetic pathway for the life of yeasts and fungi. FEMS Yeast Research, 2004, 4, 351-359.	2.3	179
16	Sampling cells by rapid filtration improves the yield of mRNAs. FEMS Yeast Research, 2004, 4, 751-756.	2.3	12
17	Mutations in GAL2 or GAL4 alleviate catabolite repression produced by galactose in Saccharomyces cerevisiae. Enzyme and Microbial Technology, 2000, 26, 748-755.	3.2	8
18	Carbohydrate and energy-yielding metabolism in non-conventional yeasts: Figure 1. FEMS Microbiology Reviews, 2000, 24, 507-529.	8.6	137

#	Article	IF	CITATIONS
19	Carbohydrate and energy-yielding metabolism in non-conventional yeasts. FEMS Microbiology Reviews, 2000, 24, 507-529.	8.6	114
20	By-product formation during exposure of respiringSaccharomyces cerevisiaecultures to excess glucose is not caused by a limited capacity of pyruvate carboxylase. FEMS Microbiology Letters, 1999, 179, 107-113.	1.8	10
21	By-product formation during exposure of respiring Saccharomyces cerevisiae cultures to excess glucose is not caused by a limited capacity of pyruvate carboxylase. FEMS Microbiology Letters, 1999, 179, 107-113.	1.8	0
22	Isolation and molecular characterization of theArabidopsis TPS1gene, encoding trehaloseâ€6â€phosphate synthase. Plant Journal, 1998, 13, 685-689.	5.7	215
23	Expression of PEP carboxylase fromEscherichia colicomplements the phenotypic effects of pyruvate carboxylase mutations inSaccharomyces cerevisiae. FEBS Letters, 1997, 412, 531-534.	2.8	12