Rick A Bevins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3562920/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Investigating sex differences and the effect of drug exposure order in the sensory reward-enhancing effects of nicotine and d-amphetamine alone and in combination. Neuropharmacology, 2022, 202, 108845.	4.1	3
2	Understanding the stimulus effects of nicotine and bupropion in a drug-drug discriminated goal-tracking task. Psychopharmacology, 2022, 239, 819-830.	3.1	1
3	Appetitive Pavlovian conditioning of the stimulus effects of nicotine enhances later nicotine selfâ€administration. Journal of the Experimental Analysis of Behavior, 2022, 117, 543-559.	1.1	1
4	Using complex behavior to understand brain mechanisms in health and disease. Journal of the Experimental Analysis of Behavior, 2022, , .	1.1	1
5	Female rats display higher methamphetamine-primed reinstatement and c-Fos immunoreactivity than male rats. Pharmacology Biochemistry and Behavior, 2021, 201, 173089.	2.9	10
6	Reward-enhancing effects of d-amphetamine and its interactions with nicotine were greater in female rats and persisted across schedules of reinforcement. Behavioural Pharmacology, 2021, 32, 435-447.	1.7	6
7	The Sugars in Alcohol Cocktails Matter. ACS Chemical Neuroscience, 2021, 12, 3284-3287.	3.5	4
8	Conditioned enhancement of the nicotine reinforcer Experimental and Clinical Psychopharmacology, 2021, 29, 385-394.	1.8	15
9	A comprehensive study to delineate the role of an extracellular vesicleâ€associated microRNAâ€29a in chronic methamphetamine use disorder. Journal of Extracellular Vesicles, 2021, 10, e12177.	12.2	22
10	Sex Differences in the Reward-Enhancing Effects of Nicotine on Ethanol Reinforcement: A Reinforcer Demand Analysis. Nicotine and Tobacco Research, 2020, 22, 238-247.	2.6	12
11	Menthol blunts the interoceptive discriminative stimulus effects of nicotine in female but not male rats. Psychopharmacology, 2020, 237, 2395-2404.	3.1	7
12	The importance of acquisition learning on nicotine and varenicline drug substitution in a drug-discriminated goal-tracking task. Pharmacology Biochemistry and Behavior, 2020, 199, 173045.	2.9	2
13	Role of Brain Derived Extracellular Vesicles in Decoding Sex Differences Associated with Nicotine Self-Administration. Cells, 2020, 9, 1883.	4.1	11
14	Male HIVâ€1 transgenic rats show reduced cocaineâ€maintained leverâ€pressing compared to F344 wildtype rats despite similar baseline locomotion. Journal of the Experimental Analysis of Behavior, 2020, 113, 468-484.	1.1	5
15	Investigating the interoceptive stimulus effects of injected menthol in rats Experimental and Clinical Psychopharmacology, 2020, 28, 19-25.	1.8	2
16	Effects of nicotine conditioning history on alcohol and methamphetamine self-administration in rats. Pharmacology Biochemistry and Behavior, 2019, 179, 1-8.	2.9	3
17	Exploring the interoceptive stimulus effects of nicotine and varenicline. Pharmacology Biochemistry and Behavior, 2019, 181, 9-16.	2.9	6
18	Interoceptive Stimulus Effects of Drugs of Abuse. , 2019, , 89-101.		5

#	Article	IF	CITATIONS
19	The effect of N-acetylcysteine or bupropion on methamphetamine self-administration and methamphetamine–triggered reinstatement of female rats. Neuropharmacology, 2018, 135, 487-495.	4.1	14
20	MicroRNA cluster miR199a/214 are differentially expressed in female and male rats following nicotine self-administration. Scientific Reports, 2018, 8, 17464.	3.3	20
21	Experimental analysis of behavior and tobacco regulatory research on nicotine reduction. Journal of the Experimental Analysis of Behavior, 2018, 110, 1-10.	1.1	3
22	A behavioral economic analysis of the value-enhancing effects of nicotine and varenicline and the role of nicotinic acetylcholine receptors in male and female rats. Behavioural Pharmacology, 2018, 29, 493-502.	1.7	14
23	Double dissociation of the anterior and posterior dorsomedial caudate-putamen in the acquisition and expression of associative learning with the nicotine stimulus. Neuropharmacology, 2017, 121, 111-119.	4.1	13
24	The effects of varenicline on methamphetamine self-administration and drug-primed reinstatement in male rats. Behavioural Brain Research, 2017, 320, 195-199.	2.2	9
25	Caring about Power Analyses. ACS Chemical Neuroscience, 2017, 8, 2352-2354.	3.5	4
26	Nicotine- and cocaine-triggered methamphetamine reinstatement in female and male Sprague-Dawley rats. Pharmacology Biochemistry and Behavior, 2017, 159, 69-75.	2.9	4
27	The effect of sazetidine-A and other nicotinic ligands on nicotine controlled goal-tracking in female and male rats. Neuropharmacology, 2017, 113, 354-366.	4.1	15
28	Sex differences and the role of dopamine receptors in the reward-enhancing effects of nicotine and bupropion. Psychopharmacology, 2017, 234, 187-198.	3.1	21
29	Sex differences in neurotensin and substance P following nicotine selfâ€administration in rats. Synapse, 2016, 70, 336-346.	1.2	12
30	Associations Between Family History of Substance Use, Childhood Trauma, and Age of First Drug Use in Persons With Methamphetamine Dependence. Journal of Addiction Medicine, 2016, 10, 269-273.	2.6	26
31	Psychological Burden and Gender Differences in Methamphetamine-Dependent Individuals in Treatment. Journal of Psychoactive Drugs, 2016, 48, 261-269.	1.7	43
32	The effects of varenicline on methamphetamine self-administration and drug-primed reinstatement in female rats. Behavioural Brain Research, 2016, 300, 150-159.	2.2	13
33	Laboratory notes from behavioral pharmacologists and trainees: Considerations for the discipline Behavior Analysis (Washington, D C), 2016, 16, 210-214.	0.5	2
34	The effect of switching pharmacological intervention during extinction on nicotine-evoked conditioned responding in rats. Psychopharmacology, 2015, 232, 4347-4358.	3.1	4
35	We Know Very Little about the Subjective Effects of Drugs in Females. ACS Chemical Neuroscience, 2015, 6, 359-361.	3.5	13
36	Ibudilast reverses the decrease in the synaptic signaling protein phosphatidylethanolamine-binding protein 1 (PEBP1) produced by chronic methamphetamine intake in rats. Drug and Alcohol Dependence, 2015, 152, 15-23.	3.2	21

#	Article	IF	CITATIONS
37	Examining the reinforcement-enhancement effects of phencyclidine and its interactions with nicotine on lever-pressing for a visual stimulus. Behavioural Brain Research, 2015, 291, 253-259.	2.2	7
38	Behavioral effects of phencyclidine on nicotine self-administration and reinstatement in the presence or absence of a visual stimulus in rats. Psychopharmacology, 2015, 232, 2877-2887.	3.1	5
39	Individual differences in the behavioral effects of nicotine: A review of the preclinical animal literature. Pharmacology Biochemistry and Behavior, 2015, 138, 80-90.	2.9	20
40	Investigation of Sex Differences in Neurotensin following Nicotine Selfâ€Administration. FASEB Journal, 2015, 29, 1019.6.	0.5	0
41	Interoception and Learning: Import to Understanding and Treating Diseases and Psychopathologies. ACS Chemical Neuroscience, 2014, 5, 624-631.	3.5	32
42	Interoceptive conditioning with nicotine using extinction and re-extinction to assess stimulus similarity with bupropion. Neuropharmacology, 2014, 86, 181-191.	4.1	9
43	Occasion Setting with Drugs. , 2014, , 1-5.		0
44	Interoceptive conditioning in rats: Effects of using a single training dose or a set of 5 different doses of nicotine. Pharmacology Biochemistry and Behavior, 2013, 114-115, 82-89.	2.9	3
45	lptakalim attenuates self-administration and acquired goal-tracking behavior controlled by nicotine. Neuropharmacology, 2013, 75, 138-144.	4.1	24
46	Nicotine enhances operant responding for qualitatively distinct reinforcers under maintenance and extinction conditions. Pharmacology Biochemistry and Behavior, 2013, 114-115, 9-15.	2.9	36
47	Sex differences in adult cognitive deficits after adolescent nicotine exposure in rats. Neurotoxicology and Teratology, 2013, 38, 72-78.	2.4	20
48	Interoceptive conditioning with a nicotine stimulus is susceptible to reinforcer devaluation Behavioral Neuroscience, 2013, 127, 465-473.	1.2	13
49	Interoceptive conditioning with the nicotine stimulus. Behavioural Pharmacology, 2013, 24, 45-54.	1.7	8
50	Nicotine enhances operant responding for qualitatively distinct reinforcers under maintenance and extinction conditions. Pharmacology Biochemistry and Behavior, 2013, 114-115, 9-15.	2.9	24
51	A quantitative analysis of the reward-enhancing effects of nicotine using reinforcer demand. Behavioural Pharmacology, 2012, 23, 781-789.	1.7	30
52	Conditioned Response Evoked by Nicotine Conditioned Stimulus Preferentially Induces c-Fos Expression in Medial Regions of Caudate-Putamen. Neuropsychopharmacology, 2012, 37, 876-884.	5.4	14
53	Disentangling the nature of the nicotine stimulus. Behavioural Processes, 2012, 90, 28-33.	1.1	21
54	Diminished conditioned responding to the nicotine stimulus by antidepressant drugs with differing specificity for the serotonin and norepinephrine transporter. Pharmacology Biochemistry and Behavior, 2012, 100, 419-424.	2.9	6

#	Article	IF	CITATIONS
55	Methamphetamine-Associated Psychosis. Journal of NeuroImmune Pharmacology, 2012, 7, 113-139.	4.1	202
56	Sign- vs. goal-tracking in a feature positive discrimination task with nicotine: Importance of spatial location of the conditional stimulus. Behavioural Brain Research, 2011, 218, 341-345.	2.2	6
57	Excitatory conditioning to the interoceptive nicotine stimulus blocks subsequent conditioning to an exteroceptive light stimulus. Behavioural Brain Research, 2011, 221, 314-319.	2.2	8
58	Nicotine competes with a visual stimulus for control of conditioned responding. Addiction Biology, 2011, 16, 152-162.	2.6	6
59	An examination of NMDA receptor contribution to conditioned responding evoked by the conditional stimulus effects of nicotine. Psychopharmacology, 2011, 213, 131-141.	3.1	7
60	Nicotine trained as a negative feature passes the retardation-of-acquisition and summation tests of a conditioned inhibitor. Learning and Memory, 2011, 18, 452-458.	1.3	14
61	Internal Stimuli Generated by Abused Substances. , 2011, , 270-289.		12
62	Reference place conditioning procedure with cocaine: increased sensitivity for measuring associatively motivated choice behavior in rats. Behavioural Pharmacology, 2010, 21, 323-331.	1.7	12
63	Competition between novelty and cocaine conditioned reward is sensitive to drug dose and retention interval Behavioral Neuroscience, 2010, 124, 141-151.	1.2	14
64	An investigation of bupropion substitution for the interoceptive stimulus effects of nicotine. Journal of Psychopharmacology, 2010, 24, 817-828.	4.0	19
65	Extinction with varenicline and nornicotine, but not ABT-418, weakens conditioned responding evoked by the interoceptive stimulus effects of nicotine. Neuropharmacology, 2010, 58, 1237-1245.	4.1	23
66	Cannabinoid Conditioned Reward and Aversion: Behavioral and Neural Processes. ACS Chemical Neuroscience, 2010, 1, 265-278.	3.5	38
67	Mecamylamine, dihydro-β-erythroidine, and dextromethorphan block conditioned responding evoked by the conditional stimulus effects of nicotine. Pharmacology Biochemistry and Behavior, 2009, 94, 319-328.	2.9	26
68	Investigation of endocannabinoid modulation of conditioned responding evoked by a nicotine CS and the Pavlovian stimulus effects of CP 55,940 in adult male rats. Psychopharmacology, 2009, 205, 655-665.	3.1	11
69	Individual differences in responses to nicotine: tracking changes from adolescence to adulthood. Acta Pharmacologica Sinica, 2009, 30, 868-878.	6.1	18
70	PRECLINICAL STUDY: Pavlovian drug discrimination with bupropion as a feature positive occasion setter: substitution by methamphetamine and nicotine, but not cocaine. Addiction Biology, 2009, 14, 165-173.	2.6	20
71	Bupropion attenuates methamphetamine self-administration in adult male rats. Drug and Alcohol Dependence, 2009, 100, 54-62.	3.2	37
72	Nicotine-evoked conditioned responding is dependent on concentration of sucrose unconditioned stimulus. Behavioural Processes, 2009, 81, 136-139.	1.1	11

#	Article	IF	CITATIONS
73	Immune responses to methamphetamine by active immunization with peptide-based, molecular adjuvant-containing vaccines. Vaccine, 2009, 27, 2981-2988.	3.8	57
74	Acquired appetitive responding to intravenous nicotine reflects a Pavlovian conditioned association Behavioral Neuroscience, 2009, 123, 97-108.	1.2	19
75	Forced Abstinence Model of Relapse to Study Pharmacological Treatments of Substance Use Disorder. Current Drug Abuse Reviews, 2009, 2, 184-194.	3.4	75
76	Neuropharmacology of the Interoceptive Stimulus Properties of Nicotine. Current Drug Abuse Reviews, 2009, 2, 243-255.	3.4	36
77	Intravenous nicotine conditions a place preference in rats using an unbiased designâ~†. Pharmacology Biochemistry and Behavior, 2008, 88, 256-264.	2.9	31
78	Bupropion differentially impacts acquisition of methamphetamine self-administration and sucrose-maintained behavior. Pharmacology Biochemistry and Behavior, 2008, 89, 463-472.	2.9	31
79	Occasion setting by drug states: Functional equivalence following similar training history. Behavioural Brain Research, 2008, 195, 260-270.	2.2	27
80	Vaccines to combat smoking. Expert Opinion on Biological Therapy, 2008, 8, 379-383.	3.1	16
81	Role of affective associations in the planning and habit systems of decision-making related to addiction. Behavioral and Brain Sciences, 2008, 31, 450-451.	0.7	9
82	Competition between the conditioned rewarding effects of cocaine and novelty Behavioral Neuroscience, 2008, 122, 140-150.	1.2	25
83	Nicotine, Tobacco Use, and the 55th Nebraska Symposium on Motivation. Nebraska Symposium on Motivation, 2008, 55, 1-3.	0.9	6
84	Altering the Motivational Function of Nicotine through Conditioning Processes. Nebraska Symposium on Motivation, 2008, 55, 111-129.	0.9	23
85	Nicotine as a conditioned stimulus: Impact of attention-deficit/hyperactivity disorder medications Experimental and Clinical Psychopharmacology, 2007, 15, 501-509.	1.8	21
86	Methamphetamine functions as a positive and negative drug feature in a Pavlovian appetitive discrimination task. Behavioural Pharmacology, 2007, 18, 755-765.	1.7	22
87	The conditional stimulus effects of nicotine vary as a function of training dose. Behavioural Pharmacology, 2007, 18, 707-716.	1.7	25
88	Bupropion hydrochloride produces conditioned hyperactivity in rats. Physiology and Behavior, 2007, 90, 790-796.	2.1	18
89	Nicotine does not produce state-dependent effects on learning in a Pavlovian appetitive goal tracking task with rats. Behavioural Brain Research, 2007, 177, 134-141.	2.2	20
90	Facilitation by drug states does not depend on acquired excitatory strength. Behavioural Brain Research, 2007, 176, 292-301.	2.2	20

#	Article	IF	CITATIONS
91	Behavioral and neuropharmacological characterization of nicotine as a conditional stimulus. European Journal of Pharmacology, 2007, 561, 91-104.	3.5	46
92	The interoceptive Pavlovian stimulus effects of caffeine. Pharmacology Biochemistry and Behavior, 2007, 86, 838-846.	2.9	12
93	Interoceptive Pavlovian conditioning with nicotine as the conditional stimulus varies as a function of the number of conditioning trials and unpaired sucrose deliveries. Behavioural Pharmacology, 2006, 17, 161-172.	1.7	21
94	Object recognition in rats and mice: a one-trial non-matching-to-sample learning task to study 'recognition memory'. Nature Protocols, 2006, 1, 1306-1311.	12.0	1,007
95	Characterization of nicotine's ability to serve as a negative feature in a Pavlovian appetitive conditioning task in rats. Psychopharmacology, 2006, 184, 470-481.	3.1	31
96	Rats' novel object interaction as a measure of environmental familiarity. Learning and Motivation, 2006, 37, 131-148.	1.2	13
97	Preexposure to nicotine alters the subsequent locomotor stimulant effects of bupropion in rats. Nicotine and Tobacco Research, 2006, 8, 141-146.	2.6	17
98	Novelty reward as a measure of anhedonia. Neuroscience and Biobehavioral Reviews, 2005, 29, 707-714.	6.1	61
99	Stimulus Properties of Nicotine, Amphetamine, and Chlordiazepoxide as Positive Features in a Pavlovian Appetitive Discrimination Task in Rats. Neuropsychopharmacology, 2005, 30, 731-741.	5.4	41
100	Timing of conditioned responding in a nicotine locomotor conditioning preparation: manipulations of the temporal arrangement between context cues and drug administration. Behavioural Brain Research, 2005, 159, 135-143.	2.2	11
101	Extending the Role of Associative Learning Processes in Nicotine Addiction. Behavioral and Cognitive Neuroscience Reviews, 2004, 3, 143-158.	3.9	131
102	Individual differences in rats' reactivity to novelty and the unconditioned and conditioned locomotor effects of methamphetamine. Pharmacology Biochemistry and Behavior, 2004, 79, 65-74.	2.9	36
103	Nicotine as a signal for the presence or absence of sucrose reward: a Pavlovian drug appetitive conditioning preparation in rats. Psychopharmacology, 2004, 172, 108-117.	3.1	81
104	Introduction: motivation, drug abuse, and 50 years of theoretical and empirical inquiry. Nebraska Symposium on Motivation, 2004, 50, ix-xv.	0.9	6
105	Nicotine-conditioned locomotor sensitization in rats: assessment of the US-preexposure effect. Behavioural Brain Research, 2003, 143, 65-74.	2.2	40
106	Immunization to nicotine with a peptide-based vaccine composed of a conformationally biased agonist of C5a as a molecular adjuvant. International Immunopharmacology, 2003, 3, 137-146.	3.8	65
107	Impact of nicotine withdrawal on novelty reward and related behaviors Behavioral Neuroscience, 2003, 117, 327-340.	1.2	33
108	Examination of GABAergic and Dopaminergic Compounds in the Acquisition of Nicotine-Conditioned Hyperactivity in Rats. Neuropsychobiology, 2002, 45, 87-94.	1.9	25

#	Article	IF	CITATIONS
109	Novel-object place conditioning: behavioral and dopaminergic processes in expression of novelty reward. Behavioural Brain Research, 2002, 129, 41-50.	2.2	78
110	The need for proximal mechanisms to understand individual differences in altruism. Behavioral and Brain Sciences, 2002, 25, 255-256.	0.7	1
111	Place Conditioning: What Does It Add to Our Understanding of Ethanol Reward?. Alcoholism: Clinical and Experimental Research, 2002, 26, 1444-1452.	2.4	11
112	Environmental Familiarization in Rats: Differential Effects of Acute and Chronic Nicotine. Neurobiology of Learning and Memory, 2001, 75, 63-76.	1.9	12
113	Dopaminergic and cholinergic antagonism in a novel-object detection task with rats. Behavioural Brain Research, 2001, 126, 211-217.	2.2	39
114	Individual differences in rat locomotor activity are diminished by nicotine through stimulation of central nicotinic acetylcholine receptors. Physiology and Behavior, 2001, 72, 237-244.	2.1	25
115	Novelty Seeking and Reward: Implications for the Study of High-Risk Behaviors. Current Directions in Psychological Science, 2001, 10, 189-193.	5.3	53
116	Should we essentially ignore the role of stimuli in a general account of operant selection?. Behavioral and Brain Sciences, 2001, 24, 528-529.	0.7	2
117	Nicotine-conditioned locomotor activity in rats: dopaminergic and GABAergic influences on conditioned expression. Pharmacology Biochemistry and Behavior, 2001, 68, 135-145.	2.9	75
118	Chronic caffeine exposure in rats blocks a subsequent nicotine-conditioned taste avoidance in a one-bottle, but not a two-bottle test. Pharmacology Biochemistry and Behavior, 2001, 70, 279-289.	2.9	9
119	One-trial context fear conditioning with immediate shock: The roles of transport and contextual cues. Learning and Behavior, 2000, 28, 162-171.	3.4	5
120	Conditioned place preference: what does it add to our preclinical understanding of drug reward?. Psychopharmacology, 2000, 153, 31-43.	3.1	1,057
121	The role of environmental familiarization in novel-object preference. Behavioural Processes, 2000, 50, 19-29.	1.1	47
122	Taste quality and extinction of a conditioned taste aversion in rats. Learning and Behavior, 1999, 27, 358-366.	3.4	13
123	Locomotion and conditioned place preference produced by acute intravenous amphetamine: role of dopamine receptors and individual differences in amphetamine self-administration. Psychopharmacology, 1999, 143, 39-46.	3.1	101
124	Conditioned increase in place preference by access to novel objects: antagonism by MK-801. Behavioural Brain Research, 1999, 99, 53-60.	2.2	89
125	Dopamine antagonism in a novel-object recognition and a novel-object place conditioning preparation with rats. Behavioural Brain Research, 1999, 103, 35-44.	2.2	82
126	Morphine-conditioned changes in locomotor activity: Role of the conditioned stimulus Experimental and Clinical Psychopharmacology, 1998, 6, 131-138.	1.8	11

#	Article	IF	CITATIONS
127	Converging evidence for one-trial context fear conditioning with an immediate shock: Importance of shock potency Journal of Experimental Psychology, 1997, 23, 312-324.	1.7	28
128	Unexpressed morphine conditioned salt aversion: procedural variants and hypertonicity of salt. Behavioural Processes, 1997, 40, 129-136.	1.1	6
129	7-OH-DPAT Has d-Amphetamine-like Discriminative Stimulus Properties. Pharmacology Biochemistry and Behavior, 1997, 58, 485-490.	2.9	10
130	(â~')-Nornicotine Partially Substitutes for (+)-Amphetamine in a Drug Discrimination Paradigm in Rats. Pharmacology Biochemistry and Behavior, 1997, 58, 1083-1087.	2.9	32
131	TheP system: A scheme for organizing Pavlovian procedures. Behavior Research Methods, 1997, 29, 473-483.	1.3	2
132	Conditioned stimulus determinants of conditioned response form in Pavlovian fear conditioning Journal of Experimental Psychology, 1996, 22, 87-104.	1.7	18
133	Characterization of the conditioned taste aversion produced by 7-OH-DPAT in Rats. Pharmacology Biochemistry and Behavior, 1996, 53, 695-699.	2.9	11
134	Second-order conditioning detects unexpressed morphine-induced salt aversion. Learning and Behavior, 1996, 24, 221-229.	3.4	21
135	Morphine taste conditioning and analgesia: Assessing conditioned and novelty-induced analgesia Experimental and Clinical Psychopharmacology, 1995, 3, 9-14.	1.8	5
136	One-trial context fear conditioning as a function of the interstimulus interval. Learning and Behavior, 1995, 23, 400-410.	3.4	44
137	A deficit in one-trial context fear conditioning is not due to opioid analgesia. Pharmacology Biochemistry and Behavior, 1994, 49, 183-186.	2.9	8
138	Factors affecting rats' location during conditioned suppression training. Learning and Behavior, 1994, 22, 302-308.	3.4	7
139	One-trial backward excitatory fear conditioning transfers across contexts. Behaviour Research and Therapy, 1992, 30, 551-554.	3.1	7
140	Selective Associations: A Methodological Critique. Psychological Record, 1992, 42, 57-73.	0.9	10
141	Rats' location during conditioned suppression training. Learning and Behavior, 1992, 20, 8-16.	3.4	10
142	Two issues in Pavlovian fear conditioning: selective fear of bright vs. dark, and CS determinants of CR form. Behavioural Processes, 1991, 24, 211-218.	1.1	18
143	SERIAL CONDITIONING AS A FUNCTION OF STIMULUS, RESPONSE, AND TEMPORAL DEPENDENCIES. Journal of the Experimental Analysis of Behavior, 1990, 53, 65-85.	1.1	13
144	Chapter 15: Developing A Device To Assess Attitudes Toward Snakes. Visitor Studies, 1989, 2, 123-130.	0.9	0