
Lawrence Steinman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3562413/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Epstein-Barr virus and multiple sclerosis. Science, 2022, 375, 264-265.	12.6	68
2	Clonally expanded B cells in multiple sclerosis bind EBV EBNA1 and GlialCAM. Nature, 2022, 603, 321-327.	27.8	343
3	COVID-19 therapeutics: Challenges and directions for the future. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2119893119.	7.1	92
4	Mobilization of innate and adaptive antitumor immune responses by the RNP-targeting antibody ATRC-101. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2123483119.	7.1	0
5	Long-term safety and efficacy of ozanimod in relapsing multiple sclerosis: Up to 5 years of follow-up in the DAYBREAK open-label extension trial. Multiple Sclerosis Journal, 2022, 28, 1944-1962.	3.0	16
6	MMR Vaccination: A Potential Strategy to Reduce Severity and Mortality of COVID-19 Illness. American Journal of Medicine, 2021, 134, 153-155.	1.5	30
7	Improvement of Comorbid Psoriasis in Patients With MS Treated With Natalizumab. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, e961.	6.0	3
8	Generating tumor-selective conditionally active biologic anti-CTLA4 antibodies via protein-associated chemical switches. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	21
9	Capturing pathogenic immune cells before they home to brain. Med, 2021, 2, 214-216.	4.4	0
10	Calibration of cell-intrinsic interleukin-2 response thresholds guides design of a regulatory T cell biased agonist. ELife, 2021, 10, .	6.0	23
11	Ozanimod in relapsing multiple sclerosis: Pooled safety results from the clinical development program. Multiple Sclerosis and Related Disorders, 2021, 51, 102844.	2.0	19
12	067â€Neurofilament light chain concentration predicts risk of relapse in participants with relapsing multiple sclerosis in phase 3 ozanimod trials. , 2021, , .		0
13	Plasma neurofilament light chain concentrations as a biomarker of clinical and radiologic outcomes in relapsing multiple sclerosis: Post hoc analysis of Phase 3 ozanimod trials. European Journal of Neurology, 2021, 28, 3722-3730.	3.3	12
14	Biological Significance of Anti–SARS-CoV-2 Antibodies. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, .	6.0	2
15	Epstein–Barr Virus in Multiple Sclerosis: Theory and Emerging Immunotherapies. Trends in Molecular Medicine, 2020, 26, 296-310.	6.7	178
16	Autoimmune Diseases: The Role for Vaccines. , 2020, , 375-381.		0
17	Mitigating alemtuzumab-associated autoimmunity in MS. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, .	6.0	15
18	Reduced development of COVID-19 in children reveals molecular checkpoints gating pathogenesis illuminating potential therapeutics. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24620-24626.	7.1	88

#	Article	IF	CITATIONS
19	Autoantibodies against central nervous system antigens in a subset of B cell–dominant multiple sclerosis patients. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21512-21518.	7.1	36
20	Part II. high-dose methotrexate with leucovorin rescue for severe COVID-19: An immune stabilization strategy for SARS-CoV-2 induced †PANIC' attack. Journal of the Neurological Sciences, 2020, 415, 116935.	0.6	34
21	A sugarâ€coated strategy to treat a rare neurologic disease provides a blueprint for a decoy glycan therapeutic and a potential vaccine for CoViDâ€19. Journal of Neurochemistry, 2020, 154, 465-467.	3.9	5
22	New targets and therapeutics for neuroprotection, remyelination and repair in multiple sclerosis. Expert Opinion on Investigational Drugs, 2020, 29, 443-459.	4.1	31
23	Part I. SARS-CoV-2 triggered †PANIC' attack in severe COVID-19. Journal of the Neurological Sciences, 2020, 415, 116936.	0.6	24
24	Efficacy and safety of ozanimod in multiple sclerosis: Dose-blinded extension of a randomized phase II study. Multiple Sclerosis Journal, 2019, 25, 1255-1262.	3.0	37
25	Safety and efficacy of ozanimod versus interferon beta-1a in relapsing multiple sclerosis (SUNBEAM): a multicentre, randomised, minimum 12-month, phase 3 trial. Lancet Neurology, The, 2019, 18, 1009-1020.	10.2	191
26	Antigen-specific tolerance to self-antigens in protein replacement therapy, gene therapy and autoimmunity. Current Opinion in Immunology, 2019, 61, 46-53.	5.5	30
27	Safety and efficacy of ozanimod versus interferon beta-1a in relapsing multiple sclerosis (RADIANCE): a multicentre, randomised, 24-month, phase 3 trial. Lancet Neurology, The, 2019, 18, 1021-1033.	10.2	184
28	DNA threads released by activated CD4 ⁺ T lymphocytes provide autocrine costimulation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8985-8994.	7.1	33
29	Immune tolerance in multiple sclerosis and neuromyelitis optica with peptide-loaded tolerogenic dendritic cells in a phase 1b trial. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8463-8470.	7.1	112
30	Axonal and Myelin Neuroprotection by the Peptoid BN201 in Brain Inflammation. Neurotherapeutics, 2019, 16, 808-827.	4.4	8
31	Small Heat Shock Proteins, Amyloid Fibrils, and Nicotine Stimulate a Common Immune Suppressive Pathway with Implications for Future Therapies. Cold Spring Harbor Perspectives in Medicine, 2019, 9, a034223.	6.2	7
32	Single-cell mass cytometry reveals distinct populations of brain myeloid cells in mouse neuroinflammation and neurodegeneration models. Nature Neuroscience, 2018, 21, 541-551.	14.8	249
33	Nonclassical monocytes: are they the next therapeutic targets in multiple sclerosis?. Immunology and Cell Biology, 2018, 96, 125-127.	2.3	26
34	Non-progressing cancer patients have persistent B cell responses expressing shared antibody paratopes that target public tumor antigens. Clinical Immunology, 2018, 187, 37-45.	3.2	86
35	Engineered DNA plasmid reduces immunity to dystrophin while improving muscle force in a model of gene therapy of Duchenne dystrophy. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9182-E9191.	7.1	17
36	An amyloidogenic hexapeptide derived from amylin attenuates inflammation and acute lung injury in murine sepsis. PLoS ONE, 2018, 13, e0199206.	2.5	3

#	Article	IF	CITATIONS
37	CSF cytokine profile in MOC-IgG+ neurological disease is similar to AQP4-IgG+ NMOSD but distinct from MS: a cross-sectional study and potential therapeutic implications. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 927-936.	1.9	116
38	Molecular signature of Epstein-Barr virus infection in MS brain lesions. Neurology: Neuroimmunology and NeuroInflammation, 2018, 5, e466.	6.0	74
39	Identification of a common immune regulatory pathway induced by small heat shock proteins, amyloid fibrils, and nicotine. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7081-7086.	7.1	32
40	Blocking immune intrusion into the brain suppresses epilepsy in Rasmussen's encephalitis model. Journal of Clinical Investigation, 2018, 128, 1724-1726.	8.2	2
41	Time correlation between mononucleosis and initial symptoms of MS. Neurology: Neuroimmunology and NeuroInflammation, 2017, 4, e308.	6.0	28
42	Phosphorylation of αB-crystallin supports reactive astrogliosis in demyelination. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1745-E1754.	7.1	37
43	Adrenocorticotropic hormone <i>versus</i> methylprednisolone added to interferon β in patients with multiple sclerosis experiencing breakthrough disease: a randomized, rater-blinded trial. Therapeutic Advances in Neurological Disorders, 2017, 10, 3-17.	3.5	16
44	T Cell–Transfer Experimental Autoimmune Encephalomyelitis: Pillar of Multiple Sclerosis and Autoimmunity. Journal of Immunology, 2017, 198, 3381-3383.	0.8	8
45	Treatment with anti-FcεRIα antibody exacerbates EAE and T-cell immunity against myelin. Neurology: Neuroimmunology and NeuroInflammation, 2017, 4, e342.	6.0	7
46	Induction of New Autoimmune Diseases After Alemtuzumab Therapy for Multiple Sclerosis. JAMA Neurology, 2017, 74, 907.	9.0	10
47	Ironâ€sulfur glutaredoxin 2 protects oligodendrocytes against damage induced by nitric oxide release from activated microglia. Glia, 2017, 65, 1521-1534.	4.9	33
48	Induction of Paralysis and Visual System Injury in Mice by T Cells Specific for Neuromyelitis Optica Autoantigen Aquaporin-4. Journal of Visualized Experiments, 2017, , .	0.3	4
49	Targeting molecules involved in immune cell trafficking to the central nervous system for therapy in multiple sclerosis. Clinical and Experimental Neuroimmunology, 2017, 8, 183-191.	1.0	2
50	Amelioration of ongoing experimental autoimmune encephalomyelitis with fluoxetine. Journal of Neuroimmunology, 2017, 313, 77-81.	2.3	30
51	The emergence of neuroepidemiology, neurovirology and neuroimmunology: the legacies of John F. Kurtzke and Richard †Dick' T. Johnson. Journal of Neurology, 2017, 264, 817-828.	3.6	1
52	Regulator of oligodendrocyte maturation, miR-219, a potential biomarker for MS. Journal of Neuroinflammation, 2017, 14, 235.	7.2	41
53	Narcolepsy and influenza vaccination-induced autoimmunity. Annals of Translational Medicine, 2017, 5, 25-25.	1.7	7
54	A Journey in Science: The Privilege of Exploring the Brain and the Immune System. Molecular Medicine, 2016, 22, 99-114.	4.4	2

#	Article	IF	CITATIONS
55	Identification of Candidate Tolerogenic CD8 ⁺ T Cell Epitopes for Therapy of Type 1 Diabetes in the NOD Mouse Model. Journal of Diabetes Research, 2016, 2016, 1-12.	2.3	9
56	Anti-Insulin Immune Responses Are Detectable in Dogs with Spontaneous Diabetes. PLoS ONE, 2016, 11, e0152397.	2.5	8
57	Tolerance checkpoint bypass permits emergence of pathogenic T cells to neuromyelitis optica autoantigen aquaporin-4. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14781-14786.	7.1	59
58	Mechanistic insights into influenza vaccine-associated narcolepsy. Human Vaccines and Immunotherapeutics, 2016, 12, 3196-3201.	3.3	15
59	Dimethyl fumarate treatment induces adaptive and innate immune modulation independent of Nrf2. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4777-4782.	7.1	238
60	Genetic background modulates outcome of therapeutic amyloid peptides in treatment of neuroinflammation. Journal of Neuroimmunology, 2016, 298, 42-50.	2.3	3
61	CEACAM1 mediates B cell aggregation in central nervous system autoimmunity. Scientific Reports, 2016, 6, 29847.	3.3	16
62	An interferon-β-resistant and NLRP3 inflammasome–independent subtype of EAE with neuronal damage. Nature Neuroscience, 2016, 19, 1599-1609.	14.8	70
63	Beginning of the end of two-stage theory purporting that inflammation then degeneration explains pathogenesis of progressive multiple sclerosis. Current Opinion in Neurology, 2016, 29, 340-344.	3.6	22
64	Hyaluronan synthesis is necessary for autoreactive T-cell trafficking, activation, and Th1 polarization. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1339-1344.	7.1	65
65	Obeticholic acid, a synthetic bile acid agonist of the farnesoid X receptor, attenuates experimental autoimmune encephalomyelitis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1600-1605.	7.1	61
66	Multiplexed autoantigen microarrays identify HLA as a key driver of anti-desmoglein and -non-desmoglein reactivities in pemphigus. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1859-1864.	7.1	50
67	Safety and immunologic effects of high- vs low-dose cholecalciferol in multiple sclerosis. Neurology, 2016, 86, 382-390.	1.1	124
68	Role reversal: infiltrating T cells protect the brain. Journal of Clinical Investigation, 2015, 125, 493-494.	8.2	3
69	HDL-bound sphingosine-1-phosphate restrains lymphopoiesis and neuroinflammation. Nature, 2015, 523, 342-346.	27.8	192
70	CD4 cell response to interval therapy with natalizumab. Annals of Clinical and Translational Neurology, 2015, 2, 570-574.	3.7	6
71	IFN-β Treatment Requires B Cells for Efficacy in Neuroautoimmunity. Journal of Immunology, 2015, 194, 2110-2116.	0.8	64
72	B-Lymphocyte-Mediated Delayed Cognitive Impairment following Stroke. Journal of Neuroscience, 2015, 35, 2133-2145.	3.6	257

#	Article	IF	CITATIONS
73	Antibodies to influenza nucleoprotein cross-react with human hypocretin receptor 2. Science Translational Medicine, 2015, 7, 294ra105.	12.4	206
74	<i>mir-181a-1/b-1</i> Modulates Tolerance through Opposing Activities in Selection and Peripheral T Cell Function. Journal of Immunology, 2015, 195, 1470-1479.	0.8	43
75	Tissue Transglutaminase contributes to experimental multiple sclerosis pathogenesis and clinical outcome by promoting macrophage migration. Brain, Behavior, and Immunity, 2015, 50, 141-154.	4.1	27
76	The re-emergence of antigen-specific tolerance as a potential therapy for MS. Multiple Sclerosis Journal, 2015, 21, 1223-1238.	3.0	18
77	No quiet surrender: molecular guardians in multiple sclerosis brain. Journal of Clinical Investigation, 2015, 125, 1371-1378.	8.2	21
78	Parsing Physiological Functions of Erythropoietin One Domain at a Time. Neurotherapeutics, 2015, 12, 848-849.	4.4	1
79	Amyloid fibrils activate B-1a lymphocytes to ameliorate inflammatory brain disease. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15016-15023.	7.1	24
80	Response to comment on "Antibodies to influenza nucleoprotein cross-react with human hypocretin receptor 2― Science Translational Medicine, 2015, 7, 314lr2.	12.4	2
81	Self-Assembling Peptides Form Immune Suppressive Amyloid Fibrils Effective in Autoimmune Encephalomyelitis. Current Topics in Behavioral Neurosciences, 2015, 26, 221-232.	1.7	7
82	A century of pavlovian experiments forming a circuit from the elucidation of neural reflexes to pharmaceuticals and electroceuticals to treat diseases. Brain, Behavior, and Immunity, 2015, 44, 17-18.	4.1	2
83	Prolactin: A versatile regulator of inflammation and autoimmune pathology. Autoimmunity Reviews, 2015, 14, 223-230.	5.8	68
84	Gene expression analysis of histamine receptors in peripheral blood mononuclear cells from individuals with clinically-isolated syndrome and different stages of multiple sclerosis. Journal of Neuroimmunology, 2014, 277, 186-188.	2.3	7
85	Going viral and the fatal vulnerability of neurons from immunity, not from infection. Proceedings of the United States of America, 2014, 111, 16982-16983.	7.1	2
86	Narcolepsy, 2009 A(H1N1) pandemic influenza, and pandemic influenza vaccinations: What is known and unknown about the neurological disorder, the role for autoimmunity, and vaccine adjuvants. Journal of Autoimmunity, 2014, 50, 1-11.	6.5	119
87	Janus Faces of Amyloid Proteins in Neuroinflammation. Journal of Clinical Immunology, 2014, 34, 61-63.	3.8	13
88	Neither T-helper type 2 nor Foxp3+ regulatory T cells are necessary for therapeutic benefit of atorvastatin in treatment of central nervous system autoimmunity. Journal of Neuroinflammation, 2014, 11, 29.	7.2	22
89	Uncovering Cryptic Glycan Markers in Multiple Sclerosis (<scp>MS</scp>) and Experimental Autoimmune Encephalomyelitis (<scp>EAE</scp>). Drug Development Research, 2014, 75, 172-188.	2.9	16
90	Immunology of Relapse and Remission in Multiple Sclerosis. Annual Review of Immunology, 2014, 32, 257-281.	21.8	261

#	Article	IF	CITATIONS
91	Conflicting consequences of immunity to cancer versus autoimmunity to neurons: Insights from paraneoplastic disease. European Journal of Immunology, 2014, 44, 3201-3205.	2.9	13
92	Mechanisms of action of therapeutic amyloidogenic hexapeptides in amelioration of inflammatory brain disease. Journal of Experimental Medicine, 2014, 211, 1847-1856.	8.5	14
93	Thymic Epithelium Determines a Spontaneous Chronic Neuritis in Icam1 <i>tm1Jcgr</i> NOD Mice. Journal of Immunology, 2014, 193, 2678-2690.	0.8	16
94	From defining antigens to new therapies in multiple sclerosis: Honoring the contributions of Ruth Arnon and Michael Sela. Journal of Autoimmunity, 2014, 54, 1-7.	6.5	22
95	Development of therapies for autoimmune disease at Stanford: a tale of multiple shots and one goal. Immunologic Research, 2014, 58, 307-314.	2.9	8
96	Therapeutic Decisions in Multiple Sclerosis. JAMA Neurology, 2013, 70, 1315-24.	9.0	80
97	Defective sphingosine 1-phosphate receptor 1 (S1P1) phosphorylation exacerbates TH17-mediated autoimmune neuroinflammation. Nature Immunology, 2013, 14, 1166-1172.	14.5	135
98	Weighing In On Autoimmune Disease: 'Hub-and-spoke' T cell traffic in autoimmunity. Nature Medicine, 2013, 19, 139-141.	30.7	12
99	Inflammatory Cytokines at the Summits of Pathological Signal Cascades in Brain Diseases. Science Signaling, 2013, 6, pe3.	3.6	51
100	Clinical optimization of antigen specific modulation of type 1 diabetes with the plasmid DNA platform. Clinical Immunology, 2013, 149, 297-306.	3.2	26
101	Natalizumab. JAMA Neurology, 2013, 70, 172.	9.0	108
102	The Gender Gap in Multiple Sclerosis. JAMA Neurology, 2013, 70, 634.	9.0	22
103	Interleukin 17F Level and Interferon Beta Response in Patients With Multiple Sclerosis. JAMA Neurology, 2013, 70, 1017.	9.0	37
104	Pathogenic T helper 1 cells reach the brain before T helper 17 cells, and T regulatory cells suppress them albeit incompletely. Acta Neuropathologica, 2013, 126, 517-518.	7.7	1
105	CRYAB modulates the activation of CD4 ⁺ T cells from relapsing–remitting multiple sclerosis patients. Multiple Sclerosis Journal, 2013, 19, 1867-1877.	3.0	13
106	The Road Not Taken. JAMA Neurology, 2013, 70, 1100.	9.0	12
107	The Interdependent, Overlapping, and Differential Roles of Type I and II IFNs in the Pathogenesis of Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2013, 191, 2967-2977.	0.8	52
108	Piet Mondrian's trees and the evolution in understanding multiple sclerosis, Charcot Prize Lecture 2011. Multiple Sclerosis Journal, 2013, 19, 5-14.	3.0	7

#	Article	IF	CITATIONS
109	Therapeutic Effects of Systemic Administration of Chaperone αB-Crystallin Associated with Binding Proinflammatory Plasma Proteins. Journal of Biological Chemistry, 2012, 287, 9708-9721.	3.4	79
110	The discovery of natalizumab, a potent therapeutic for multiple sclerosis. Journal of Cell Biology, 2012, 199, 413-416.	5.2	61
111	Identification of Naturally Occurring Fatty Acids of the Myelin Sheath That Resolve Neuroinflammation. Science Translational Medicine, 2012, 4, 137ra73.	12.4	58
112	Peroxisome proliferator-activated receptor (PPAR)α and -γ regulate IFNγ and IL-17A production by human T cells in a sex-specific way. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9505-9510.	7.1	178
113	Platelets Provide a Bounty of Potential Targets for Therapy in Multiple Sclerosis. Circulation Research, 2012, 110, 1157-1158.	4.5	11
114	Optimization of current and future therapy for autoimmune diseases. Nature Medicine, 2012, 18, 59-65.	30.7	79
115	Reâ€engineering of pathogenic aquaporin 4â€specific antibodies as molecular decoys to treat neuromyelitis optica. Annals of Neurology, 2012, 71, 287-288.	5.3	9
116	Nostalgia: the similarities between immunological and neurological memory. Immunological Reviews, 2012, 248, 5-9.	6.0	0
117	Lessons learned at the intersection of immunology and neuroscience. Journal of Clinical Investigation, 2012, 122, 1146-1148.	8.2	15
118	Combining statins with interferon beta in multiple sclerosis: think twice, it might not be all right. Lancet Neurology, The, 2011, 10, 672-673.	10.2	8
119	Human peptidome display. Nature Biotechnology, 2011, 29, 500-502.	17.5	10
120	1,25-Dihydroxyvitamin D ₃ Ameliorates Th17 Autoimmunity via Transcriptional Modulation of Interleukin-17A. Molecular and Cellular Biology, 2011, 31, 3653-3669.	2.3	420
121	Systemic augmentation of αB-crystallin provides therapeutic benefit twelve hours post-stroke onset via immune modulation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13287-13292.	7.1	130
122	IL-7 Promotes T _H 1 Development and Serum IL-7 Predicts Clinical Response to Interferon-β in Multiple Sclerosis. Science Translational Medicine, 2011, 3, 93ra68.	12.4	93
123	αB-Crystallin Is a Target for Adaptive Immune Responses and a Trigger of Innate Responses in Preactive Multiple Sclerosis Lesions. Journal of Neuropathology and Experimental Neurology, 2010, 69, 694-703.	1.7	100
124	Delivery of myelin peptides through the first line of defense, skin, to counter autoimmunity in multiple sclerosis. Annals of Neurology, 2010, 68, 567-569.	5.3	2
125	Mixed results with modulation of TH-17 cells in human autoimmune diseases. Nature Immunology, 2010, 11, 41-44.	14.5	112
126	Inhibitory role for GABA in autoimmune inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2580-2585.	7.1	395

#	Article	IF	CITATIONS
127	Modulation of postoperative cognitive decline via blockade of inflammatory cytokines outside the brain. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20595-20596.	7.1	29
128	The gray aspects of white matter disease in multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8083-8084.	7.1	18
129	Shifting therapeutic attention in MS to osteopontin, type 1 and type 2 IFN. European Journal of Immunology, 2009, 39, 2358-2360.	2.9	21
130	Anaphylaxis to a self-peptide in the absence of mast cells or histamine. Laboratory Investigation, 2009, 89, 398-405.	3.7	9
131	A molecular trio in relapse and remission in multiple sclerosis. Nature Reviews Immunology, 2009, 9, 440-447.	22.7	182
132	Phase 2 trial of a DNA vaccine encoding myelin basic protein for multiple sclerosis. Annals of Neurology, 2008, 63, 611-620.	5.3	171
133	Proteomic analysis of active multiple sclerosis lesions reveals therapeutic targets. Nature, 2008, 451, 1076-1081.	27.8	472
134	New targets for treatment of multiple sclerosis. Journal of the Neurological Sciences, 2008, 274, 1-4.	0.6	12
135	A rush to judgment on Th17. Journal of Experimental Medicine, 2008, 205, 1517-1522.	8.5	163
136	Nuanced roles of cytokines in three major human brain disorders. Journal of Clinical Investigation, 2008, 118, 3557-3563.	8.2	95
137	Nanosensor Detection of an Immunoregulatory Tryptophan Influx/Kynurenine Efflux Cycle. PLoS Biology, 2007, 5, e257.	5.6	112
138	Self-antigen tetramers discriminate between myelin autoantibodies to native or denatured protein. Nature Medicine, 2007, 13, 211-217.	30.7	342
139	A brief history of TH17, the first major revision in the TH1/TH2 hypothesis of T cell–mediated tissue damage. Nature Medicine, 2007, 13, 139-145.	30.7	1,205
140	Type II monocytes modulate T cell–mediated central nervous system autoimmune disease. Nature Medicine, 2007, 13, 935-943.	30.7	407
141	Increasing GABA Activity Prevents Autoimmune Neuroinflammation. Clinical Immunology, 2007, 123, S140.	3.2	1
142	Antigen-Specific Therapy of Multiple Sclerosis: The Long-Sought Magic Bullet. Neurotherapeutics, 2007, 4, 661-665.	4.4	22
143	Heme oxygenase–1 and carbon monoxide suppress autoimmune neuroinflammation. Journal of Clinical Investigation, 2007, 117, 438-447.	8.2	268
144	Isoprenoids determine Th1/Th2 fate in pathogenic T cells, providing a mechanism of modulation of autoimmunity by atorvastatin. Journal of Experimental Medicine, 2006, 203, 401-412.	8.5	194

#	Article	IF	CITATIONS
145	Nogo in multiple sclerosis: Growing roles of a growth inhibitor. Journal of the Neurological Sciences, 2006, 245, 201-210.	0.6	18
146	A neuropeptide in immune-mediated inflammation, Y?. Trends in Immunology, 2006, 27, 164-167.	6.8	57
147	Statin therapy and autoimmune disease: from protein prenylation to immunomodulation. Nature Reviews Immunology, 2006, 6, 358-370.	22.7	581
148	Statins in the treatment of central nervous system autoimmune disease. Journal of Neuroimmunology, 2006, 178, 140-148.	2.3	59
149	How to successfully apply animal studies in experimental allergic encephalomyelitis to research on multiple sclerosis. Annals of Neurology, 2006, 60, 12-21.	5.3	441
150	State of the Art. Four Easy Pieces: Interconnections between Tissue Injury, Intermediary Metabolism, Autoimmunity, and Chronic Degeneration. Proceedings of the American Thoracic Society, 2006, 3, 484-486.	3.5	19
151	Controlling autoimmunity in sporadic inclusion-body myositis. Neurology, 2006, 66, S56-S58.	1.1	8
152	Immunomodulatory synergy by combination of atorvastatin and glatiramer acetate in treatment of CNS autoimmunity. Journal of Clinical Investigation, 2006, 116, 1037-1044.	8.2	98
153	Type II HMG-CoA Reductase Inhibitors (Statins) Provide Acute-Graft-Versus-Host Disease Protection by Th-2 Cytokine Induction While Sparing Graft-Versus-Leukemia Activity Blood, 2006, 108, 189-189.	1.4	0
154	Multiple sclerosis: trapped in deadly glue. Nature Medicine, 2005, 11, 252-253.	30.7	69
155	Design of effective immunotherapy for human autoimmunity. Nature, 2005, 435, 612-619.	27.8	248
156	Drug Insight: using statins to treat neuroinflammatory disease. Nature Clinical Practice Neurology, 2005, 1, 106-112.	2.5	27
157	Antigen-Specific Therapies in Multiple Sclerosis: Going Beyond Proteins and Peptides. International Reviews of Immunology, 2005, 24, 415-446.	3.3	40
158	Treatment of Autoimmune Neuroinflammation with a Synthetic Tryptophan Metabolite. Science, 2005, 310, 850-855.	12.6	391
159	Virtues and pitfalls of EAE for the development of therapies for multiple sclerosis. Trends in Immunology, 2005, 26, 565-571.	6.8	238
160	Immune Therapy for Autoimmune Diseases. Science, 2004, 305, 212-216.	12.6	128
161	Elaborate interactions between the immune and nervous systems. Nature Immunology, 2004, 5, 575-581.	14.5	488
162	High-throughput Methods for Measuring Autoantibodies in Systemic Lupus Erythematosus and other Autoimmune Diseases. Autoimmunity, 2004, 37, 269-272.	2.6	30

#	Article	IF	CITATIONS
163	Collateral damage repaired. Nature, 2003, 422, 671-672.	27.8	9
164	Transcriptional analysis of targets in multiple sclerosis. Nature Reviews Immunology, 2003, 3, 483-492.	22.7	109
165	Involvement of both 'allergic' and 'autoimmune' mechanisms in EAE, MS and other autoimmune diseases. Trends in Immunology, 2003, 24, 479-484.	6.8	126
166	Optic Neuritis, A New Variant of Experimental Encephalomyelitis, A Durable Model for All Seasons, Now In Its Seventieth Year. Journal of Experimental Medicine, 2003, 197, 1065-1071.	8.5	51
167	Engineering better cytokines. Nature Biotechnology, 2003, 21, 1293-1294.	17.5	9
168	Statins as potential therapeutic agents in neuroinflammatory disorders. Current Opinion in Neurology, 2003, 16, 393-401.	3.6	78
169	Multiple Sclerosis: Deeper Understanding of Its Pathogenesis Reveals New Targets for Therapy. Annual Review of Neuroscience, 2002, 25, 491-505.	10.7	229
170	Proteomics for the Development of DNA Tolerizing Vaccines to Treat Autoimmune Disease. Clinical Immunology, 2002, 103, 7-12.	3.2	40
171	Protein and Peptide Array Analysis of Autoimmune Disease. BioTechniques, 2002, 33, S66-S69.	1.8	55
172	The HMC-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease. Nature, 2002, 420, 78-84.	27.8	1,060
173	Autoantigen microarrays for multiplex characterization of autoantibody responses. Nature Medicine, 2002, 8, 295-301.	30.7	693
174	Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nature Medicine, 2002, 8, 500-508.	30.7	1,558
175	The Influence of the Proinflammatory Cytokine, Osteopontin, on Autoimmune Demyelinating Disease. Science, 2001, 294, 1731-1735.	12.6	807
176	An unexpected version of horror autotoxicus: anaphylactic shock to a self-peptide. Nature Immunology, 2001, 2, 216-222.	14.5	174
177	Multiple sclerosis: a two-stage disease. Nature Immunology, 2001, 2, 762-764.	14.5	563
178	Multiple approaches to multiple sclerosis. Nature Medicine, 2000, 6, 15-16.	30.7	36
179	Induction of a non-encephalitogenic type 2 T helper-cell autoimmune response in multiple sclerosis after administration of an altered peptide ligand in a placebo-controlled, randomized phase II trial. Nature Medicine, 2000, 6, 1176-1182.	30.7	506
180	The specificity of the antibody response in multiple sclerosis. Annals of Neurology, 1998, 43, 4-6.	5.3	22

#	Article	IF	CITATIONS
181	ldiotypic immunization induces immunity to mutated p53 and tumor rejection. Nature Medicine, 1998, 4, 710-712.	30.7	58
182	Some Misconceptions about Understanding Autoimmunity through Experiments with Knockouts. Journal of Experimental Medicine, 1997, 185, 2039-2041.	8.5	89
183	Evaluating Human T Cell Receptor Gene Expression by PCR. Current Protocols in Immunology, 1997, 22, Unit 10.26.	3.6	0
184	Viral damage and the breakdown of self-tolerance. Nature Medicine, 1997, 3, 1085-1087.	30.7	29
185	Multiple Sclerosis: A Coordinated Immunological Attack against Myelin in the Central Nervous System. Cell, 1996, 85, 299-302.	28.9	844
186	Differential activation of human autoreactive T cell clones by altered peptide ligands derived from myelin basic protein peptide (87–99). European Journal of Immunology, 1996, 26, 2624-2634.	2.9	96
187	Superantigens in demyelinating disease. Seminars in Immunopathology, 1996, 18, 51-56.	4.0	7
188	The right stuff: Breaking through the xenotransplant barrier. Nature Medicine, 1996, 2, 1185-1186.	30.7	2
189	Treatment of experimental encephalomyelitis with a peptide analogue of myelin basic protein. Nature, 1996, 379, 343-346.	27.8	382
190	Myelin basic protein peptide specificity and T-cell receptor gene usage of HPRT mutant T-cell clones in patients with multiple sclerosis. Annals of Neurology, 1994, 36, 734-740.	5.3	28
191	Induction of relapsing paralysis in experimental autoimmune encephalomyelitis by bacterial superantigen. Nature, 1993, 365, 642-644.	27.8	265
192	Autoimmune Disease. Scientific American, 1993, 269, 106-114.	1.0	70
193	Selection for T-cell receptor Vβ–Dβ–Jβ gene rearrangements with specificity for a myelin basic protein peptide in brain lesions of multiple sclerosis. Nature, 1993, 362, 68-70.	27.8	414
194	EAE: A Model for Immune Intervention with Synthetic Peptides. International Reviews of Immunology, 1992, 9, 223-230.	3.3	9
195	Neoplastic and reactive human astrocytes express interleukin-8 gene. Neurosurgical Review, 1992, 15, 203-207.	2.4	44
196	Multiple sclerosis and its animal models: the role of the major histocompatibility complex and the T cell receptor repertoire. Seminars in Immunopathology, 1992, 14, 79-93.	4.0	22
197	Prevention of experimental autoimmune encephalomyelitis by antibodies against α4βl integrin. Nature, 1992, 356, 63-66.	27.8	1,668
198	Normal dystrophin transcripts detected in Duchenne muscular dystrophy patients after myoblast transplantation. Nature, 1992, 356, 435-438.	27.8	406

#	Article	IF	CITATIONS
199	Letters to the editor. Muscle and Nerve, 1992, 15, 1209-1215.	2.2	28
200	An analysis of T-cell-receptor variable-region genes in tumor-infiltrating lymphocytes within malignant tumors. International Journal of Cancer, 1991, 49, 545-550.	5.1	22
201	Limited heterogeneity of rearranged T-cell receptor Vα transcripts in brains of multiple sclerosis patients. Nature, 1990, 345, 344-346.	27.8	418
202	HTLV-I sequences are not detected in peripheral blood genomic DNA or in brain cDNA of multiple sclerosis patients. Annals of Neurology, 1990, 28, 574-577.	5.3	18
203	Isolation of a complementary DNA clone encoding an autoantigen recognized by an anti-neuronal cell antibody from a patient with paraneoplastic cerebellar degeneration. Annals of Neurology, 1990, 28, 692-698.	5.3	97
204	Prospects for specific immunotherapy in myasthenia gravis. FASEB Journal, 1990, 4, 2726-2731.	0.5	36
205	T Cell Recognition in Experimental Autoimmune Encephalomyelitis: Prospects for Immune Intervention with Synthetic Peptides. International Reviews of Immunology, 1990, 6, 37-47.	3.3	8
206	T-cell epitope of the autoantigen myelin basic protein that induces encephalomyelitis. Nature, 1986, 324, 258-260.	27.8	468
207	T-cell clones specific for myelin basic protein induce chronic relapsing paralysis and demyelination. Nature, 1985, 317, 355-358.	27.8	519
208	The Neuropathology of Propionic Acidemia. Developmental Medicine and Child Neurology, 1983, 25, 87-94.	2.1	19
209	Ublituximab versus teriflunomide in relapsing MS patients. , 0, , .		3