Kapil Tahlan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3562172/publications.pdf

Version: 2024-02-01

44 papers

2,496 citations

361413 20 h-index 276875 41 g-index

44 all docs

44 docs citations

times ranked

44

4024 citing authors

#	Article	IF	Citations
1	Minimum Information about a Biosynthetic Gene cluster. Nature Chemical Biology, 2015, 11, 625-631.	8.0	715
2	SQ109 Targets MmpL3, a Membrane Transporter of Trehalose Monomycolate Involved in Mycolic Acid Donation to the Cell Wall Core of Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2012, 56, 1797-1809.	3.2	437
3	Uptake of unnatural trehalose analogs as a reporter for Mycobacterium tuberculosis. Nature Chemical Biology, 2011, 7, 228-235.	8.0	202
4	Biosynthesis and Recycling of Nicotinamide Cofactors in Mycobacterium tuberculosis. Journal of Biological Chemistry, 2008, 283, 19329-19341.	3 . 4	152
5	Initiation of actinorhodin export in Streptomyces coelicolor. Molecular Microbiology, 2007, 63, 951-961.	2.5	116
6	A community resource for paired genomic and metabolomic data mining. Nature Chemical Biology, 2021, 17, 363-368.	8.0	81
7	Origins of the \hat{I}^2 -lactam rings in natural products. Journal of Antibiotics, 2013, 66, 401-410.	2.0	61
8	Crystal Structures of the Streptomyces coelicolor TetR-Like Protein ActR Alone and in Complex with Actinorhodin or the Actinorhodin Biosynthetic Precursor (S)-DNPA. Journal of Molecular Biology, 2008, 376, 1377-1387.	4.2	59
9	A Two-Step Mechanism for the Activation of Actinorhodin Export and Resistance in Streptomyces coelicolor. MBio, 2012, 3, e00191-12.	4.1	56
10	Expression of ccaR, Encoding the Positive Activator of Cephamycin C and Clavulanic Acid Production in Streptomyces clavuligerus, Is Dependent on bldG. Antimicrobial Agents and Chemotherapy, 2005, 49, 1529-1541.	3.2	52
11	Two Sets of Paralogous Genes Encode the Enzymes Involved in the Early Stages of Clavulanic Acid and Clavam Metabolite Biosynthesis in Streptomyces clavuligerus. Antimicrobial Agents and Chemotherapy, 2004, 48, 930-939.	3.2	49
12	Ligand Recognition by ActR, a TetR-Like Regulator of Actinorhodin Export. Journal of Molecular Biology, 2008, 383, 753-761.	4.2	45
13	Klebsiella Species Associated with Bovine Mastitis in Newfoundland. PLoS ONE, 2014, 9, e106518.	2.5	45
14	The Paralogous Pairs of Genes Involved in Clavulanic Acid and Clavam Metabolite Biosynthesis Are Differently Regulated in Streptomyces clavuligerus. Journal of Bacteriology, 2004, 186, 6286-6297.	2.2	32
15	5S Clavam Biosynthetic Genes Are Located in Both the Clavam and Paralog Gene Clusters in Streptomyces clavuligerus. Chemistry and Biology, 2007, 14, 131-142.	6.0	32
16	Three unlinked gene clusters are involved in clavam metabolite biosynthesis in Streptomyces clavuligerus. Canadian Journal of Microbiology, 2004, 50, 803-810.	1.7	29
17	Genome-Wide Diversity and Phylogeography of Mycobacterium avium subsp. paratuberculosis in Canadian Dairy Cattle. PLoS ONE, 2016, 11, e0149017.	2.5	24
18	Investigation of Transcription Repression and Small-Molecule Responsiveness by TetR-Like Transcription Factors Using a Heterologous <i>Escherichia coli</i> Bacteriology, 2007, 189, 6655-6664.	2.2	23

#	Article	IF	CITATIONS
19	TxtH is a key component of the thaxtomin biosynthetic machinery in the potato common scab pathogen <i>Streptomyces scabies</i> . Molecular Plant Pathology, 2019, 20, 1379-1393.	4.2	23
20	Genomic and Metabolomic Analysis of the Potato Common Scab Pathogen <i>Streptomyces scabiei</i> ACS Omega, 2021, 6, 11474-11487.	3.5	21
21	Transcriptional and translational analysis of the ccaR gene from Streptomyces clavuligerus. Microbiology (United Kingdom), 2004, 150, 4137-4145.	1.8	20
22	Comparative Genomics and Metabolomics Analyses of Clavulanic Acid-Producing Streptomyces Species Provides Insight Into Specialized Metabolism. Frontiers in Microbiology, 2019, 10, 2550.	3.5	20
23	Regulation of Coronafacoyl Phytotoxin Production by the PAS-LuxR Family Regulator CfaR in the Common Scab Pathogen Streptomyces scabies. PLoS ONE, 2015, 10, e0122450.	2.5	20
24	Proteomics analysis of global regulatory cascades involved in clavulanic acid production and morphological development in <i>Streptomyces clavuligerus</i> Iournal of Industrial Microbiology and Biotechnology, 2016, 43, 537-555.	3.0	18
25	Bacterial Transmembrane Proteins that Lack N-Terminal Signal Sequences. PLoS ONE, 2011, 6, e19421.	2.5	18
26	Genome Sequences of Klebsiella variicola Isolates from Dairy Animals with Bovine Mastitis from Newfoundland, Canada. Genome Announcements, $2015, 3, \ldots$	0.8	15
27	Î-(<scp> </scp> -α-aminoadipyl)- <scp> </scp> -cysteinyl- <scp>d</scp> -valine synthetase (ACVS): discovery and perspectives. Journal of Industrial Microbiology and Biotechnology, 2017, 44, 517-524.	3.0	15
28	Examination of <i>Mycobacterium avium </i> subspecies <i>paratuberculosis </i> mixed genotype infections in dairy animals using a whole genome sequencing approach. PeerJ, 2016, 4, e2793.	2.0	14
29	Mycobacterial Membrane Proteins QcrB and AtpE: Roles in Energetics, Antibiotic Targets, and Associated Mechanisms of Resistance. Journal of Membrane Biology, 2018, 251, 105-117.	2.1	13
30	Specialized Metabolites from Ribosome Engineered Strains of Streptomyces clavuligerus. Metabolites, 2021, 11, 239.	2.9	13
31	Use of the native flp gene to generate in-frame unmarked mutations in Streptomyces spp Gene, 2009, 443, 48-54.	2.2	12
32	Methods for Detecting Mycobacterial Mixed Strain Infections–A Systematic Review. Frontiers in Genetics, 2020, 11, 600692.	2.3	12
33	Nigericin and Geldanamycin Are Phytotoxic Specialized Metabolites Produced by the Plant Pathogen <i>Streptomyces</i> sp. 11-1-2. Microbiology Spectrum, 2022, 10, e0231421.	3.0	11
34	Typing of Mycobacterium avium Subspecies paratuberculosis Isolates from Newfoundland Using Fragment Analysis. PLoS ONE, 2015, 10, e0126071.	2.5	10
35	Production of Plant-Associated Volatiles by Select Model and Industrially Important Streptomyces spp Microorganisms, 2020, 8, 1767.	3.6	8
36	Carboxyethylarginine Synthase Genes Show Complex Cross-Regulation in Streptomyces clavuligerus. Applied and Environmental Microbiology, 2013, 79, 240-249.	3.1	6

#	Article	IF	CITATIONS
37	In vivo functional analysis of a class A \hat{l}^2 -lactamase-related protein essential for clavulanic acid biosynthesis in Streptomyces clavuligerus. PLoS ONE, 2019, 14, e0215960.	2.5	6
38	5S Clavam Biosynthesis Is Controlled by an Atypical Two-Component Regulatory System in Streptomyces clavuligerus. Antimicrobial Agents and Chemotherapy, 2012, 56, 4845-4855.	3.2	4
39	New cell wall biosynthesis inhibitors under active development for tuberculosis. Drugs of the Future, 2009, 34, 739.	0.1	3
40	Functional Cross-Talk of MbtH-Like Proteins During Thaxtomin Biosynthesis in the Potato Common Scab Pathogen Streptomyces scabiei. Frontiers in Microbiology, 2020, 11, 585456.	3.5	2
41	Mechanisms underlying mycobacterial infections. Drug Discovery Today Disease Mechanisms, 2010, 7, e1-e3.	0.8	1
42	Drugs against Mycobacterium tuberculosis. , 2020, , 139-170.		1
43	Canadian Aquaculture: Supporting the need to develop sentinel surveillance programs for antimicrobial resistance among Canadian marine aquaculture facilities. ISEE Conference Abstracts, 2021, 2021, .	0.0	0
44	705 Canadian salmon aquaculture: the absence of antimicrobial resistance from hazard designation in an industry with high reporting of occupational injuries. Safety and Health at Work, 2022, 13, S335.	0.6	0