
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3561830/publications.pdf Version: 2024-02-01

VIVA HELISTEN

#	Article	IF	CITATIONS
1	Vasodilatory mechanisms in contracting skeletal muscle. Journal of Applied Physiology, 2004, 97, 393-403.	2.5	348
2	Effects of αâ€AMPK knockout on exerciseâ€induced gene activation in mouse skeletal muscle. FASEB Journal, 2005, 19, 1146-1148.	0.5	248
3	Adenosine Concentrations in the Interstitium of Resting and Contracting Human Skeletal Muscle. Circulation, 1998, 98, 6-8.	1.6	214
4	Effect of high intensity training on capillarization and presence of angiogenic factors in human skeletal muscle. Journal of Physiology, 2004, 557, 571-582.	2.9	209
5	Resveratrol blunts the positive effects of exercise training on cardiovascular health in aged men. Journal of Physiology, 2013, 591, 5047-5059.	2.9	206
6	PGC-11± is not mandatory for exercise- and training-induced adaptive gene responses in mouse skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2008, 294, E463-E474.	3.5	196
7	Localization of Nitric Oxide Synthase in Human Skeletal Muscle. Biochemical and Biophysical Research Communications, 1996, 227, 88-93.	2.1	193
8	Formation of hydrogen peroxide and nitric oxide in rat skeletal muscle cells during contractions. Free Radical Biology and Medicine, 2003, 35, 455-464.	2.9	180
9	Vasodilator interactions in skeletal muscle blood flow regulation. Journal of Physiology, 2012, 590, 6297-6305.	2.9	159
10	Cardiovascular Adaptations to Exercise Training. , 2015, 6, 1-32.		146
11	Copenhagen Consensus statement 2019: physical activity and ageing. British Journal of Sports Medicine, 2019, 53, 856-858.	6.7	145
12	AMP deamination and purine exchange in human skeletal muscle during and after intense exercise. Journal of Physiology, 1999, 520, 909-920.	2.9	139
13	Exerciseâ€Induced Capillary Growth in Human Skeletal Muscle and the Dynamics of <scp>VEGF</scp> . Microcirculation, 2014, 21, 301-314.	1.8	137
14	Advances and challenges in skeletal muscle angiogenesis. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H326-H336.	3.2	133
15	Pro―and antiâ€angiogenic factors in human skeletal muscle in response to acute exercise and training. Journal of Physiology, 2012, 590, 595-606.	2.9	125
16	Inhibition of nitric oxide and prostaglandins, but not endothelial-derived hyperpolarizing factors, reduces blood flow and aerobic energy turnover in the exercising human leg. Journal of Physiology, 2007, 581, 853-861.	2.9	123
17	Four weeks of speed endurance training reduces energy expenditure during exercise and maintains muscle oxidative capacity despite a reduction in training volume. Journal of Applied Physiology, 2009, 106, 73-80.	2.5	114
18	Cytochrome P450 2C9 plays an important role in the regulation of exerciseâ€induced skeletal muscle blood flow and oxygen uptake in humans. Journal of Physiology, 2003, 546, 307-314.	2.9	108

#	Article	IF	CITATIONS
19	Exerciseâ€induced hyperaemia and leg oxygen uptake are not altered during effective inhibition of nitric oxide synthase with N G â€nitroâ€I â€arginine methyl ester in humans. Journal of Physiology, 2001, 531, 257-264.	2.9	105
20	Exercise training, but not resveratrol, improves metabolic and inflammatory status in skeletal muscle of aged men. Journal of Physiology, 2014, 592, 1873-1886.	2.9	105
21	Intense interval training enhances human skeletal muscle oxygen uptake in the initial phase of dynamic exercise at high but not at low intensities. Journal of Physiology, 2004, 559, 335-345.	2.9	101
22	PGC-1α mediates exercise-induced skeletal muscle VEGF expression in mice. American Journal of Physiology - Endocrinology and Metabolism, 2009, 297, E92-E103.	3.5	99
23	Lifelong physical activity prevents an ageâ€related reduction in arterial and skeletal muscle nitric oxide bioavailability in humans. Journal of Physiology, 2012, 590, 5361-5370.	2.9	99
24	Effect of sprint cycle training on activities of antioxidant enzymes in human skeletal muscle. Journal of Applied Physiology, 1996, 81, 1484-1487.	2.5	98
25	Reduced volume but increased training intensity elevates muscle Na ⁺ -K ⁺ pump α ₁ -subunit and NHE1 expression as well as short-term work capacity in humans. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 294, R966-R974.	1.8	97
26	Skeletal muscle blood flow and oxygen uptake at rest and during exercise in humans: a pet study with nitric oxide and cyclooxygenase inhibition. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H1510-H1517.	3.2	95
27	Exercise but not Prostanoids Enhance Levels of Vascular Endothelial Growth Factor and other Proliferative Agents in Human Skeletal Muscle Interstitium. Journal of Physiology, 2003, 550, 217-225.	2.9	92
28	ATP-induced vasodilation and purinergic receptors in the human leg: roles of nitric oxide, prostaglandins, and adenosine. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 296, R1140-R1148.	1.8	91
29	Adenosine Contributes to Blood Flow Regulation in the Exercising Human Leg by Increasing Prostaglandin and Nitric Oxide Formation. Hypertension, 2009, 53, 993-999.	2.7	91
30	Role of nitric oxide and prostanoids in the regulation of leg blood flow and blood pressure in humans with essential hypertension: effect of highâ€intensity aerobic training. Journal of Physiology, 2012, 590, 1481-1494.	2.9	90
31	Local release of ATP into the arterial inflow and venous drainage of human skeletal muscle: insight from ATP determination with the intravascular microdialysis technique. Journal of Physiology, 2011, 589, 1847-1857.	2.9	88
32	The hyperaemic response to passive leg movement is dependent on nitric oxide: a new tool to evaluate endothelial nitric oxide function. Journal of Physiology, 2012, 590, 4391-4400.	2.9	85
33	Passive leg movement enhances interstitial VEGF protein, endothelial cell proliferation, and eNOS mRNA content in human skeletal muscle. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 294, R975-R982.	1.8	81
34	Intense intermittent exercise provides weak stimulus for vascular endothelial growth factor secretion and capillary growth in skeletal muscle. Experimental Physiology, 2013, 98, 585-597.	2.0	81
35	Assessment of resistance vessel function in human skeletal muscle: guidelines for experimental design, Doppler ultrasound, and pharmacology. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 318, H301-H325.	3.2	78
36	Effect of tension on contraction-induced glucose transport in rat skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 1999, 277, E208-E214.	3.5	76

#	Article	IF	CITATIONS
37	The effect of passive movement training on angiogenic factors and capillary growth in human skeletal muscle. Journal of Physiology, 2010, 588, 3833-3845.	2.9	72
38	Muscle interstitial ATP and norepinephrine concentrations in the human leg during exercise and ATP infusion. Journal of Applied Physiology, 2009, 107, 1757-1762.	2.5	68
39	Neuromuscular blockade of slow twitch muscle fibres elevates muscle oxygen uptake and energy turnover during submaximal exercise in humans. Journal of Physiology, 2008, 586, 6037-6048.	2.9	66
40	Effect of acute exercise and exercise training on VEGF splice variants in human skeletal muscle. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2004, 287, R397-R402.	1.8	63
41	Exercise training modulates functional sympatholysis and αâ€adrenergic vasoconstrictor responsiveness in hypertensive and normotensive individuals. Journal of Physiology, 2014, 592, 3063-3073.	2.9	63
42	Effect of aerobic exercise training on asthma in adults: a systematic review and meta-analysis. European Respiratory Journal, 2020, 56, 2000146.	6.7	62
43	Angiogenic response to passive movement and active exercise in individuals with peripheral arterial disease. Journal of Applied Physiology, 2013, 115, 1777-1787.	2.5	60
44	Extracellular formation and uptake of adenosine during skeletal muscle contraction in the rat: role of adenosine transporters. Journal of Physiology, 2001, 537, 597-605.	2.9	59
45	Effects of high-intensity training on cardiovascular risk factors in premenopausal and postmenopausal women. American Journal of Obstetrics and Gynecology, 2017, 216, 384.e1-384.e11.	1.3	58
46	Comparison of exogenous adenosine and voluntary exercise on human skeletal muscle perfusion and perfusion heterogeneity. Journal of Applied Physiology, 2010, 108, 378-386.	2.5	56
47	Antioxidant supplementation enhances the exercise-induced increase in mitochondrial uncoupling protein 3 and endothelial nitric oxide synthase mRNA content in human skeletal muscle. Free Radical Biology and Medicine, 2007, 43, 353-361.	2.9	54
48	Effect of lifelong resveratrol supplementation and exercise training on skeletal muscle oxidative capacity in aging mice; impact of PGC-11±. Experimental Gerontology, 2013, 48, 1311-1318.	2.8	54
49	Exercise Training Alters the Balance Between Vasoactive Compounds in Skeletal Muscle of Individuals With Essential Hypertension. Hypertension, 2011, 58, 943-949.	2.7	52
50	Subcellular localization and mechanism of secretion of vascular endothelial growth factor in human skeletal muscle. FASEB Journal, 2013, 27, 3496-3504.	0.5	52
51	Nitric oxide and reactive oxygen species in limb vascular function: what is the effect of physical activity?. Free Radical Research, 2014, 48, 71-83.	3.3	52
52	Inhibition of Nitric Oxide Synthesis by Systemic N ^G -Monomethyl- <i>L</i> -Arginine Administration in Humans: Effects on Interstitial Adenosine, Prostacyclin and Potassium Concentrations in Resting and Contracting Skeletal Muscle. Journal of Vascular Research, 2000, 37, 297-302.	1.4	50
53	Interstitial and Plasma Adenosine Stimulate Nitric Oxide and Prostacyclin Formation in Human Skeletal Muscle. Hypertension, 2010, 56, 1102-1108.	2.7	50
54	Indication of <i>in vivo</i> xanthine oxidase activity in human skeletal muscle during exercise. Acta Physiologica Scandinavica, 1988, 134, 159-160.	2.2	49

#	Article	IF	CITATIONS
55	Exercise training normalizes skeletal muscle vascular endothelial growth factor levels in patients with essential hypertension. Journal of Hypertension, 2010, 28, 1176-1185.	0.5	49
56	Two weeks of muscle immobilization impairs functional sympatholysis but increases exercise hyperemia and the vasodilatory responsiveness to infused ATP. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H2074-H2082.	3.2	49
57	Physical activity opposes the ageâ€related increase in skeletal muscle and plasma endothelinâ€1 levels and normalizes plasma endothelinâ€1 levels in individuals with essential hypertension. Acta Physiologica, 2013, 207, 524-535.	3.8	47
58	Resveratrol modulates the angiogenic response to exercise training in skeletal muscles of aged men. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H1111-H1119.	3.2	47
59	Roles of sedentary aging and lifelong physical activity in exchange of glutathione across exercising human skeletal muscle. Free Radical Biology and Medicine, 2014, 73, 166-173.	2.9	46
60	Early Postmenopausal Phase Is Associated With Reduced Prostacyclin-Induced Vasodilation That Is Reversed by Exercise Training. Hypertension, 2016, 68, 1011-1020.	2.7	46
61	Biomarkers of vascular function in premenopausal and recent postmenopausal women of similar age: effect of exercise training. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 306, R510-R517.	1.8	45
62	Capillary growth, ultrastructure remodelling and exercise training in skeletal muscle of essential hypertensive patients. Acta Physiologica, 2015, 214, 210-220.	3.8	45
63	Regulation of VEGF and bFGF mRNA expression and other proliferative compounds in skeletal muscle cells. Angiogenesis, 2004, 7, 255-267.	7.2	41
64	Increased skeletal muscle capillarization enhances insulin sensitivity. American Journal of Physiology - Endocrinology and Metabolism, 2014, 307, E1105-E1116.	3.5	41
65	Effects of exercise training and resveratrol on vascular health in aging. Free Radical Biology and Medicine, 2016, 98, 165-176.	2.9	41
66	Capillary ultrastructure and mitochondrial volume density in skeletal muscle in relation to reduced exercise capacity of patients with intermittent claudication. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 310, R943-R951.	1.8	40
67	Endurance training does not alter the level of neuronal nitric oxide synthase in human skeletal muscle. Journal of Applied Physiology, 2000, 89, 1033-1038.	2.5	37
68	Contraction-induced secretion of VEGF from skeletal muscle cells is mediated by adenosine. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H857-H862.	3.2	37
69	Impaired formation of vasodilators in peripheral tissue in essential hypertension is normalized by exercise training. Journal of Hypertension, 2012, 30, 2007-2014.	0.5	36
70	Capillary growth in human skeletal muscle: physiological factors and the balance between pro-angiogenic and angiostatic factors. Biochemical Society Transactions, 2014, 42, 1616-1622.	3.4	36
71	Effect of endurance versus resistance training on quadriceps muscle dysfunction in COPD: a pilot study. International Journal of COPD, 2016, Volume 11, 2659-2669.	2.3	36
72	Insulinâ€induced membrane permeability to glucose in human muscles at rest and following exercise. Journal of Physiology, 2020, 598, 303-315.	2.9	35

#	Article	IF	CITATIONS
73	Vascular function in health, hypertension, and diabetes: effect of physical activity on skeletal muscle microcirculation. Scandinavian Journal of Medicine and Science in Sports, 2015, 25, 60-73.	2.9	34
74	Vasoactive enzymes and blood flow responses to passive and active exercise in peripheral arterial disease. Atherosclerosis, 2016, 246, 98-105.	0.8	34
75	The effect of two exercise modalities on skeletal muscle capillary ultrastructure in individuals with type 2 diabetes. Scandinavian Journal of Medicine and Science in Sports, 2019, 29, 360-368.	2.9	33
76	Effects of Exercise Training on Regulation of Skeletal Muscle Glucose Metabolism in Elderly Men. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2015, 70, 866-872.	3.6	32
77	10â€⊋0â€30 training increases performance and lowers blood pressure and <scp>VEGF</scp> in runners. Scandinavian Journal of Medicine and Science in Sports, 2015, 25, e479-89.	2.9	32
78	Leg vascular and skeletal muscle mitochondrial adaptations to aerobic highâ€intensity exercise training are enhanced in the early postmenopausal phase. Journal of Physiology, 2017, 595, 2969-2983.	2.9	32
79	Probenecid Inhibits α-Adrenergic Receptor–Mediated Vasoconstriction in the Human Leg Vasculature. Hypertension, 2018, 71, 151-159.	2.7	32
80	Inducible deletion of skeletal muscle AMPKα reveals that AMPK is required for nucleotide balance but dispensable for muscle glucose uptake and fat oxidation during exercise. Molecular Metabolism, 2020, 40, 101028.	6.5	32
81	The effect of muscle contraction on the regulation of adenosine formation in rat skeletal muscle cells. Journal of Physiology, 1999, 518, 761-768.	2.9	30
82	Effect of endurance versus resistance training on local muscle and systemic inflammation and oxidative stress in <scp>COPD</scp> . Scandinavian Journal of Medicine and Science in Sports, 2018, 28, 2339-2348.	2.9	30
83	Contribution of intravascular <i>versus</i> interstitial purines and nitric oxide in the regulation of exercise hyperaemia in humans. Journal of Physiology, 2012, 590, 5015-5023.	2.9	29
84	Leg blood flow and skeletal muscle microvascular perfusion responses to submaximal exercise in peripheral arterial disease. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H1425-H1433.	3.2	29
85	Early sarcomere and metabolic defects in a zebrafish <i>pitx2c</i> cardiac arrhythmia model. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24115-24121.	7.1	28
86	Skeletal Muscle Signaling and the Heart Rate and Blood Pressure Response to Exercise. Hypertension, 2013, 61, 1126-1133.	2.7	27
87	Relationship between performance at different exercise intensities and skeletal muscle characteristics. Journal of Applied Physiology, 2011, 110, 1555-1563.	2.5	26
88	Adaptations with Intermittent Exercise Training in Post- and Premenopausal Women. Medicine and Science in Sports and Exercise, 2017, 49, 96-105.	0.4	26
89	Low blood flow at onset of moderate-intensity exercise does not limit muscle oxygen uptake. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2010, 298, R843-R848.	1.8	25
90	lschemic Preconditioning Improves Microvascular Endothelial Function in Remote Vasculature by Enhanced Prostacyclin Production. Journal of the American Heart Association, 2020, 9, e016017.	3.7	25

#	Article	IF	CITATIONS
91	High-intensity interval, but not endurance, training induces muscle fiber type-specific subsarcolemmal lipid droplet size reduction in type 2 diabetic patients. American Journal of Physiology - Endocrinology and Metabolism, 2018, 315, E872-E884.	3.5	23
92	The exercise timing hypothesis: can exercise training compensate for the reduction in blood vessel function after menopause if timed right?. Journal of Physiology, 2019, 597, 4915-4925.	2.9	23
93	Activation of estrogen response elements is mediated both via estrogen and muscle contractions in rat skeletal muscle myotubes. American Journal of Physiology - Cell Physiology, 2009, 296, C215-C220.	4.6	22
94	Endothelial mechanotransduction proteins and vascular function are altered by dietary sucrose supplementation in healthy young male subjects. Journal of Physiology, 2017, 595, 5557-5571.	2.9	21
95	Effects of menopause and high-intensity training on insulin sensitivity and muscle metabolism. Menopause, 2018, 25, 165-175.	2.0	21
96	Methods for the determination of skeletal muscle blood flow: development, strengths and limitations. European Journal of Applied Physiology, 2018, 118, 1081-1094.	2.5	21
97	Effect of extraluminal ATP application on vascular tone and blood flow in skeletal muscle: implications for exercise hyperemia. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 305, R281-R290.	1.8	20
98	Infusion of ATP increases leg oxygen delivery but not oxygen uptake in the initial phase of intense kneeâ€extensor exercise in humans. Experimental Physiology, 2014, 99, 1399-1408.	2.0	20
99	Lifelong Physical Activity Determines Vascular Function in Late Postmenopausal Women. Medicine and Science in Sports and Exercise, 2020, 52, 627-636.	0.4	20
100	Reduced blood flow to contracting skeletal muscle in ageing humans: is it all an effect of sand through the hourglass?. Journal of Physiology, 2016, 594, 2297-2305.	2.9	19
101	Histamine H ₁ and H ₂ receptors are essential transducers of the integrative exercise training response in humans. Science Advances, 2021, 7, .	10.3	19
102	Potentiation of cGMP signaling increases oxygen delivery and oxidative metabolism in contracting skeletal muscle of older but not young humans. Physiological Reports, 2015, 3, e12508.	1.7	18
103	Cardiac Adaptations to Highâ€Intensity Aerobic Training in Premenopausal and Recent Postmenopausal Women: The Copenhagen Women Study. Journal of the American Heart Association, 2017, 6, .	3.7	18
104	Platelet responses to pharmacological and physiological interventions in middleâ€aged men with different habitual physical activity levels. Acta Physiologica, 2018, 223, e13028.	3.8	18
105	Reduced skeletal-muscle perfusion and impaired ATP release during hypoxia and exercise in individuals with type 2 diabetes. Diabetologia, 2019, 62, 485-493.	6.3	18
106	Alpha adrenergic receptor blockade increases capillarization and fractional O ₂ extraction and lowers blood flow in contracting human skeletal muscle. Acta Physiologica, 2017, 221, 32-43.	3.8	17
107	Opposing effects of nitric oxide and prostaglandin inhibition on muscle mitochondrial V̇ <scp>o</scp> ₂ during exercise. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 303, R94-R100.	1.8	16
108	Exercise training improves blood flow to contracting skeletal muscle of older men via enhanced cGMP signaling. Journal of Applied Physiology, 2018, 124, 109-117.	2.5	16

#	Article	IF	CITATIONS
109	Aerobic exercise training lowers platelet reactivity and improves platelet sensitivity to prostacyclin in pre―and postmenopausal women. Journal of Thrombosis and Haemostasis, 2017, 15, 2419-2431.	3.8	15
110	The Endothelial Mechanotransduction Protein Platelet Endothelial Cell Adhesion Molecule-1 Is Influenced by Aging and Exercise Training in Human Skeletal Muscle. Frontiers in Physiology, 2018, 9, 1807.	2.8	15
111	Angiogenic potential is reduced in skeletal muscle of aged women. Journal of Physiology, 2020, 598, 5149-5164.	2.9	15
112	Effects of Exercise Training Intensity and Duration on Skeletal Muscle Capillarization in Healthy Subjects: A Meta-analysis. Medicine and Science in Sports and Exercise, 2022, 54, 1714-1728.	0.4	15
113	Regulation of skeletal muscle blood flow during exercise. Current Opinion in Physiology, 2019, 10, 146-155.	1.8	14
114	Hyperinsulinemia does not cause de novo capillary recruitment in rat skeletal muscle. Microcirculation, 2020, 27, e12593.	1.8	14
115	Leg blood flow is impaired during small muscle mass exercise in patients with COPD. Journal of Applied Physiology, 2017, 123, 624-631.	2.5	13
116	Impact of β-adrenergic signaling in PGC-1α-mediated adaptations in mouse skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2018, 314, E1-E20.	3.5	12
117	The impact of acute remote ischaemic preconditioning on cerebrovascular function. European Journal of Applied Physiology, 2020, 120, 603-612.	2.5	12
118	Does Exercise Influence the Susceptibility to Arterial Thrombosis? An Integrative Perspective. Frontiers in Physiology, 2021, 12, 636027.	2.8	12
119	Seven-day remote ischaemic preconditioning improves endothelial function in patients with type 2 diabetes mellitus: a randomised pilot study. European Journal of Endocrinology, 2019, 181, 659-669.	3.7	12
120	Regulation of bone blood flow in humans: The role of nitric oxide, prostaglandins, and adenosine. Scandinavian Journal of Medicine and Science in Sports, 2018, 28, 1552-1558.	2.9	11
121	Effect of PDE5 inhibition on the modulation of sympathetic α-adrenergic vasoconstriction in contracting skeletal muscle of young and older recreationally active humans. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H1867-H1875.	3.2	10
122	The effect of nitric oxide synthase inhibition with and without inhibition of prostaglandins on blood flow in different human skeletal muscles. European Journal of Applied Physiology, 2017, 117, 1175-1180.	2.5	10
123	Aerobic High-Intensity Exercise Training Improves Cardiovascular Health in Older Post-menopausal Women. Frontiers in Aging, 2021, 2, .	2.6	10
124	Microvascular Function Is Impaired after Short-Term Immobilization in Healthy Men. Medicine and Science in Sports and Exercise, 2020, 52, 2107-2116.	0.4	9
125	Early time course of change in angiogenic proteins in human skeletal muscle and vascular cells with endurance training. Scandinavian Journal of Medicine and Science in Sports, 2020, 30, 1117-1131.	2.9	9
126	Muscleâ€strain injury exudate favors acute tissue healing and prolonged connective tissue formation in humans. FASEB Journal, 2019, 33, 10369-10382.	0.5	8

#	Article	IF	CITATIONS
127	Effect of menopause and exercise training on plasma apolipoprotein M and sphingosine-1-phosphate. Journal of Applied Physiology, 2019, 126, 214-220.	2.5	8
128	Commentaries on Point:Counterpoint: Investigators should/should not control for menstrual cycle phase when performing studies of vascular control. Journal of Applied Physiology, 2020, 129, 1122-1135.	2.5	8
129	Optimizing hyaluronidase dose and plasmid DNA delivery greatly improves gene electrotransfer efficiency in rat skeletal muscle. Biochemistry and Biophysics Reports, 2015, 4, 342-350.	1.3	7
130	Limb vascular function in women-Effects of female sex hormones and physical activity. Translational Sports Medicine, 2018, 1, 14-24.	1.1	7
131	Effects of High-Intensity Exercise Training on Adipose Tissue Mass, Glucose Uptake and Protein Content in Pre- and Post-menopausal Women. Frontiers in Sports and Active Living, 2020, 2, 60.	1.8	7
132	Measurement of Insulin- and Contraction-Stimulated Glucose Uptake in Isolated and Incubated Mature Skeletal Muscle from Mice. Journal of Visualized Experiments, 2021, , .	0.3	7
133	Xanthine dehydrogenase and purine metabolism in man. With special reference to exercise. Acta Physiologica Scandinavica Supplementum, 1994, 621, 1-73.	1.0	7
134	Bengt Saltin (1935–2014). Journal of Physiology, 2014, 592, 5149-5151.	2.9	6
135	Assessment of diabetic foot ulcers based on pictorial material: an interobserver study. Journal of Wound Care, 2020, 29, 658-663.	1.2	6
136	AXIN1 knockout does not alter AMPK/mTORC1 regulation and glucose metabolism in mouse skeletal muscle. Journal of Physiology, 2021, 599, 3081-3100.	2.9	6
137	The legacy of the Copenhagen School: in the footsteps of Lindhard and Krogh. Acta Physiologica, 2010, 199, 347-348.	3.8	5
138	Effect of high-intensity exercise training on functional sympatholysis in young and older habitually active men. Translational Sports Medicine, 2018, 1, 37-45.	1.1	5
139	Effects of aging and exercise training on leg hemodynamics and oxidative metabolism in the transition from rest to steady-state exercise: role of cGMP signaling. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 315, R274-R283.	1.8	5
140	A High Activity Level Is Required for Augmented Muscle Capillarization in Older Women. Medicine and Science in Sports and Exercise, 2021, 53, 894-903.	0.4	5
141	Tendon blood flow, angiogenesis, and tendinopathy pathogenesis. Translational Sports Medicine, 2021, 4, 756-771.	1.1	5
142	Is the Pannexin-1 Channel a Mechanism Underlying Hypertension in Humans? a Translational Study of Human Hypertension. Hypertension, 2022, 79, 1132-1143.	2.7	5
143	The effect of purinergic P2 receptor blockade on skeletal muscle exercise hyperemia in miniature swine. European Journal of Applied Physiology, 2014, 114, 2147-2155.	2.5	4
144	Limitations of skeletal muscle oxygen supply in ageing. Journal of Physiology, 2016, 594, 2259-2260.	2.9	4

#	Article	lF	CITATIONS
145	The effect of tyramine infusion and exercise on blood flow, coagulation and clot microstructure in healthy individuals. Thrombosis Research, 2018, 170, 32-37.	1.7	4
146	High metabolic substrate load induces mitochondrial dysfunction in rat skeletal muscle microvascular endothelial cells. Physiological Reports, 2021, 9, e14855.	1.7	4
147	Redox balance in human skeletal muscle-derived endothelial cells - Effect of exercise training. Free Radical Biology and Medicine, 2022, 179, 144-155.	2.9	4
148	What turns off the angiogenic switch in skeletal muscle?. Experimental Physiology, 2015, 100, 772-773.	2.0	3
149	Cardiac perfusion and function after high-intensity exercise training in late premenopausal and recent postmenopausal women: an MRI study. Journal of Applied Physiology, 2019, 126, 1272-1280.	2.5	3
150	The Impact of Lower Limb Immobilization and Rehabilitation on Angiogenic Proteins and Capillarization in Skeletal Muscle. Medicine and Science in Sports and Exercise, 2021, 53, 1797-1806.	0.4	3
151	Menopausal transition does not influence skeletal muscle capillary growth in response to cycle training in women. Journal of Applied Physiology, 2021, 131, 369-375.	2.5	2
152	Short-Term Supplementation With Fermented Red Clover Extract Reduces Vascular Inflammation in Early Post-menopausal Women. Frontiers in Cardiovascular Medicine, 2022, 9, 826959.	2.4	2
153	Oestrogen, exercise and vascular function. Journal of Physiology, 2019, 597, 4871-4871.	2.9	1
154	Regulatory Mechanisms of Estrogen on Vascular Ageing. Oxidative Medicine and Cellular Longevity, 2019, 1-2.	4.0	1
155	Effect of aerobic exercise training on asthma control in postmenopausal women (the ATOM-study): protocol for an outcome assessor, randomised controlled trial. BMJ Open, 2021, 11, e049477.	1.9	1
156	Functional sympatholysis in mouse skeletal muscle involves sarcoplasmic reticulum swelling in arterial smooth muscle cells. Physiological Reports, 2021, 9, e15133.	1.7	1
157	Increased Presence of Xanthine Oxidase and Insulin-Like Growth Factor-I (IGF-I) in Skeletal Muscle after a Week of Strenuous Exercise in Man. Clinical Science, 1994, 87, 88-89.	0.0	0
158	Reply from Lasse Gliemann, Jesper Olesen, Rasmus SjÃrup BiensÃ, Stefan Peter Mortensen, Michael Nyberg, Jens Bangsbo, Henriette Pilegaard and Ylva Hellsten. Journal of Physiology, 2014, 592, 553-553.	2.9	0
159	Exercise training reverses an ageâ€related attenuation in ATP signaling in human skeletal muscle. Translational Sports Medicine, 2019, 2, 248-255.	1.1	0
160	Physical activity is essential and never too late. Translational Sports Medicine, 2019, 2, 101-101.	1.1	0
161	On the horizon of aging and physical activity research. Applied Physiology, Nutrition and Metabolism, 2020, 45, 113-117.	1.9	0
162	A reminder on blood pressure measurements. Translational Sports Medicine, 2021, 4, 157-158.	1.1	0

YLVA HELLSTEN

#	Article	IF	CITATIONS
163	The adenosine system in skeletal muscle of individuals with essential hypertension and the effect of physical training. FASEB Journal, 2012, 26, 872.12.	0.5	0
164	Resveratrol blunts the positive effects of exercise training in aged men; a doubleâ€blind, randomized, placeboâ€controlled training study. FASEB Journal, 2013, 27, 1143.7.	0.5	0
165	Does a compensatory formation of nitric oxide during inhibition of prostanoid synthesis in skeletal muscle explain the redundancy between these vasoactive systems?. FASEB Journal, 2013, 27, 898.7.	0.5	0
166	Impaired ATP Release in Individuals with Type 2 Diabetes Assessed by the Intravascular Microdialysis Technique. FASEB Journal, 2018, 32, 713.11.	0.5	0