David N Frick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3561225/publications.pdf

Version: 2024-02-01

74 papers 4,264 citations

36 h-index 64 g-index

98 all docs 98 docs citations

98 times ranked 4633 citing authors

#	Article	IF	CITATIONS
1	Development of a Novel, Small-Molecule Brain-Penetrant Histone Deacetylase Inhibitor That Enhances Spatial Memory Formation in Mice. Journal of Medicinal Chemistry, 2022, , .	6.4	4
2	A transplant recipient's pandemic perspective. Transplant Infectious Disease, 2021, 23, e13738.	1.7	1
3	Discovery of Drug-Like Ligands for the Mac1 Domain of SARS-CoV-2 Nsp3. SLAS Discovery, 2020, 25, 1162-1170.	2.7	36
4	Molecular Basis for ADP-Ribose Binding to the Mac1 Domain of SARS-CoV-2 nsp3. Biochemistry, 2020, 59, 2608-2615.	2.5	96
5	Fluorescent probe displacement assays reveal unique nucleic acid binding properties of human nudix enzymes. Analytical Biochemistry, 2020, 595, 113622.	2.4	6
6	New Techniques to Study Intracellular Receptors in Living Cells: Insights Into RIG-I-Like Receptor Signaling. Advances in Experimental Medicine and Biology, 2018, 1111, 219-240.	1.6	1
7	Role of the Conserved DECH-Box Cysteine in Coupling Hepatitis C Virus Helicase-Catalyzed ATP Hydrolysis to RNA Unwinding. Biochemistry, 2018, 57, 6247-6255.	2.5	1
8	Shape-based virtual screening, synthesis and evaluation of novel pyrrolone derivatives as antiviral agents against HCV. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 936-940.	2.2	11
9	Quantitative microspectroscopic imaging reveals viral and cellular RNA helicase interactions in live cells. Journal of Biological Chemistry, 2017, 292, 11165-11177.	3.4	9
10	In silico identification, design and synthesis of novel piperazine-based antiviral agents targeting the hepatitis C virus helicase. European Journal of Medicinal Chemistry, 2017, 125, 1115-1131.	5.5	18
11	Computer-aided identification, synthesis and evaluation of substituted thienopyrimidines as novel inhibitors of HCV replication. European Journal of Medicinal Chemistry, 2016, 123, 31-47.	5.5	26
12	Bicyclic octahydrocyclohepta [b] pyrrol-4(1 H) one derivatives as novel selective anti-hepatitis C virus agents. European Journal of Medicinal Chemistry, 2016, 122, 319-325.	5.5	6
13	Novel symmetrical phenylenediamines as potential anti-hepatitis C virus agents. Antiviral Chemistry and Chemotherapy, 2015, 24, 155-160.	0.6	1
14	Benzothiazole and Pyrrolone Flavivirus Inhibitors Targeting the Viral Helicase. ACS Infectious Diseases, 2015, 1, 140-148.	3.8	44
15	Simultaneously Targeting the NS3 Protease and Helicase Activities for More Effective Hepatitis C Virus Therapy. ACS Chemical Biology, 2015, 10, 1887-1896.	3.4	10
16	Discovery of the 2-phenyl-4,5,6,7-Tetrahydro-1H-indole as a novel anti-hepatitis C virus targeting scaffold. European Journal of Medicinal Chemistry, 2015, 96, 250-258.	5.5	24
17	Analysis of the Enzymatic Activity of an NS3 Helicase Genotype 3a Variant Sequence Obtained from a Relapse Patient. PLoS ONE, 2015, 10, e0144638.	2.5	3
18	Ebselen Inhibits Hepatitis C Virus NS3 Helicase Binding to Nucleic Acid and Prevents Viral Replication. ACS Chemical Biology, 2014, 9, 2393-2403.	3.4	70

#	Article	IF	CITATIONS
19	Discovering New Medicines Targeting Helicases: Challenges and Recent Progress. Journal of Biomolecular Screening, 2013, 18, 761-781.	2.6	93
20	Primuline Derivatives That Mimic RNA to Stimulate Hepatitis C Virus NS3 Helicase-catalyzed ATP Hydrolysis. Journal of Biological Chemistry, 2013, 288, 19949-19957.	3.4	11
21	An Ire1–Phk1 Chimera Reveals a Dispensable Role of Autokinase Activity in Endoplasmic Reticulum Stress Response. Journal of Molecular Biology, 2013, 425, 2083-2099.	4.2	17
22	Aurintricarboxylic Acid Modulates the Affinity of Hepatitis C Virus NS3 Helicase for Both Nucleic Acid and ATP. Biochemistry, 2013, 52, 6151-6159.	2.5	32
23	The interdomain interface in bifunctional enzyme protein 3/4A (NS3/4A) regulates protease and helicase activities. Protein Science, 2013, 22, 1786-1798.	7.6	20
24	Identification and analysis of hepatitis C virus NS3 helicase inhibitors using nucleic acid binding assays. Nucleic Acids Research, 2012, 40, 8607-8621.	14.5	51
25	Optimization of Potent Hepatitis C Virus NS3 Helicase Inhibitors Isolated from the Yellow Dyes Thioflavine S and Primuline. Journal of Medicinal Chemistry, 2012, 55, 3319-3330.	6.4	62
26	Fluorescent primuline derivatives inhibit hepatitis C virus NS3-catalyzed RNA unwinding, peptide hydrolysis and viral replicase formation. Antiviral Research, 2012, 96, 245-255.	4.1	18
27	Identification and Analysis of Inhibitors Targeting the Hepatitis C Virus NS3 Helicase. Methods in Enzymology, 2012, 511, 463-483.	1.0	18
28	Ivermectin is a potent inhibitor of flavivirus replication specifically targeting NS3 helicase activity: new prospects for an old drug. Journal of Antimicrobial Chemotherapy, 2012, 67, 1884-1894.	3.0	329
29	Ceestatin, a Novel Small Molecule Inhibitor of Hepatitis C Virus Replication, Inhibits 3-Hydroxy-3-Methylglutaryl-Coenzyme A Synthase. Journal of Infectious Diseases, 2011, 204, 609-616.	4.0	12
30	Development of novel therapies for hepatitis C. Antiviral Research, 2010, 86, 79-92.	4.1	70
31	PSI-7851, a Pronucleotide of β- <scp>d</scp> -2′-Deoxy-2′-Fluoro-2′- <i>C</i> -Methyluridine Monophosphate, Is a Potent and Pan-Genotype Inhibitor of Hepatitis C Virus Replication. Antimicrobial Agents and Chemotherapy, 2010, 54, 3187-3196.	3.2	137
32	The p12 Subunit of Human Polymerase δ Modulates the Rate and Fidelity of DNA Synthesis. Biochemistry, 2010, 49, 3545-3554.	2.5	53
33	Mechanism and Specificity of a Symmetrical Benzimidazolephenylcarboxamide Helicase Inhibitor. Biochemistry, 2010, 49, 1822-1832.	2.5	28
34	Thioflavin S inhibits hepatitis C virus RNA replication and the viral helicase with a novel mechanism. FASEB Journal, 2010, 24, lb202.	0.5	4
35	Helicase inhibitors as specifically targeted antiviral therapy for hepatitis C. Future Virology, 2009, 4, 277-293.	1.8	49
36	Cyclophilin B stimulates RNA synthesis by the HCV RNA dependent RNA polymerase. Biochemical Pharmacology, 2009, 77, 1173-1180.	4.4	35

3

#	Article	IF	CITATIONS
37	Fuel Specificity of the Hepatitis C Virus NS3 Helicase. Journal of Molecular Biology, 2009, 388, 851-864.	4.2	21
38	A Method to Simultaneously Monitor Hepatitis C Virus NS3 Helicase and Protease Activities. Methods in Molecular Biology, 2009, 587, 223-233.	0.9	13
39	Effects of Mutagenic and Chain-Terminating Nucleotide Analogs on Enzymes Isolated from Hepatitis C Virus Strains of Various Genotypes. Antimicrobial Agents and Chemotherapy, 2008, 52, 1901-1911.	3.2	22
40	Analysis of the Evolutionary Forces in an Immunodominant CD8 Epitope in Hepatitis C Virus at a Population Level. Journal of Virology, 2008, 82, 3438-3451.	3.4	58
41	DNA damage alters DNA polymerase to a form that exhibits increased discrimination against modified template bases and mismatched primers. Nucleic Acids Research, 2008, 37, 647-657.	14.5	74
42	Monitoring helicase activity with molecular beacons. BioTechniques, 2008, 45, 433-442.	1.8	54
43	Role of Divalent Metal Cations in ATP Hydrolysis Catalyzed by the Hepatitis C Virus NS3 Helicase: Magnesium Provides a Bridge for ATP to Fuel Unwinding. Journal of Molecular Biology, 2007, 365, 1017-1032.	4.2	49
44	The hepatitis C virus NS3 protein: a model RNA helicase and potential drug target. Current Issues in Molecular Biology, 2007, 9, 1-20.	2.4	119
45	Hepatitis C Virus Subgenomic Replicon Requires an Active NS3 RNA Helicase. Journal of Virology, 2006, 80, 404-411.	3.4	112
46	Step-by-step progress toward understanding the hepatitis C virus RNA helicase. Hepatology, 2006, 43, 1392-1395.	7.3	6
47	Understanding Helicases as a Means of Virus Control. Current Pharmaceutical Design, 2006, 12, 1315-1338.	1.9	96
48	RNA unwinding by the hepatitis C virus NS3 inhibits its ability to cleave the viral polyprotein. FASEB Journal, 2006, 20, A43.	0.5	0
49	The NS3 Helicase RNA Unwinding Activity Is Critical for Hepatitis C Virus Replication. FASEB Journal, 2006, 20, A940.	0.5	0
50	A Mutant of PCNA that Exhibits Decreased Binding to Human DNA Polymerase Delta. FASEB Journal, 2006, 20, .	0.5	0
51	Electrostatic analysis of the hepatitis C virus NS3 helicase reveals both active and allosteric site locations. Nucleic Acids Research, 2004, 32, 5519-5528.	14.5	30
52	Enhanced nucleic acid binding to ATP-bound hepatitis C virus NS3 helicase at low pH activates RNA unwinding. Nucleic Acids Research, 2004, 32, 4060-4070.	14.5	31
53	The Nonstructural Protein 3 Protease/Helicase Requires an Intact Protease Domain to Unwind Duplex RNA Efficiently. Journal of Biological Chemistry, 2004, 279, 1269-1280.	3.4	97
54	The Hepatitis C Virus Replicase: Insights into RNA-dependent RNA Replication and Prospects for Rational Drug Design. Current Organic Chemistry, 2004, 8, 223-241.	1.6	6

#	Article	IF	CITATIONS
55	Two Novel Conserved Motifs in the Hepatitis C Virus NS3 Protein Critical for Helicase Action. Journal of Biological Chemistry, 2003, 278, 44514-44524.	3.4	56
56	Hepatitis C Virus NS3 ATPases/Helicases from Different Genotypes Exhibit Variations in Enzymatic Properties. Journal of Virology, 2003, 77, 3950-3961.	3.4	57
57	Helicases as antiviral drug targets. Drug News and Perspectives, 2003, 16, 355.	1.5	69
58	DNA Primases. Annual Review of Biochemistry, 2001, 70, 39-80.	11.1	341
59	A Complex of the Bacteriophage T7 Primase-Helicase and DNA Polymerase Directs Primer Utilization. Journal of Biological Chemistry, 2001, 276, 21809-21820.	3.4	36
60	Characterization of a Novel DNA Primase from theSalmonella typhimuriumBacteriophage SP6â€. Biochemistry, 2000, 39, 1643-1654.	2.5	13
61	Studies on the ADP-ribose Pyrophosphatase Subfamily of the Nudix Hydrolases and Tentative Identification of trgB, a Gene Associated with Tellurite Resistance. Journal of Biological Chemistry, 1999, 274, 32318-32324.	3.4	138
62	Interaction of Bacteriophage T7 Gene 4 Primase with Its Template Recognition Site. Journal of Biological Chemistry, 1999, 274, 35889-35898.	3.4	51
63	Interaction of Ribonucleoside Triphosphates with the Gene 4 Primase of Bacteriophage T7. Journal of Biological Chemistry, 1999, 274, 35899-35907.	3.4	34
64	Orf186 Represents a New Member of the Nudix Hydrolases, Active on Adenosine(5′)triphospho(5′)adenosine, ADP-ribose, and NADH. Journal of Biological Chemistry, 1998, 273, 3192-3197.	3.4	69
65	An N-terminal fragment of the gene 4 helicase/primase of bacteriophage T7 retains primase activity in the absence of helicase activity. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 7957-7962.	7.1	69
66	Solution Structure of the Quaternary MutTâ^'M2+â^'AMPCPPâ^'M2+ Complex and Mechanism of Its Pyrophosphohydrolase Action,. Biochemistry, 1997, 36, 1199-1211.	2.5	73
67	The Role of Glu 57 in the Mechanism of theEscherichia coliMutT Enzyme by Mutagenesis and Heteronuclear NMRâ€. Biochemistry, 1996, 35, 6715-6726.	2.5	55
68	Escherichia coli orf17 Codes for a Nucleoside Triphosphate Pyrophosphohydrolase Member of the MutT Family of Proteins. Journal of Biological Chemistry, 1996, 271, 24649-24654.	3.4	62
69	The MutT Proteins or "Nudix―Hydrolases, a Family of Versatile, Widely Distributed, "Housecleaning― Enzymes. Journal of Biological Chemistry, 1996, 271, 25059-25062.	3.4	619
70	A Novel GDP-Mannose Mannosyl Hydrolase Shares Homology with the MutT Family of Enzymes. Journal of Biological Chemistry, 1995, 270, 24086-24091.	3.4	61
71	Solution Structure of the MutT Enzyme, a Nucleoside Triphosphate Pyrophosphohydrolase. Biochemistry, 1995, 34, 14997-15005.	2.5	94
72	NMR Studies of the Conformations and Location of Nucleotides Bound to the Escherichia coli MutT Enzyme. Biochemistry, 1995, 34, 5577-5586.	2.5	45

#	Article	IF	CITATION
73	Cloning, Purification, and Properties of a Novel NADH Pyrophosphatase. Journal of Biological Chemistry, 1995, 270, 1529-1534.	3.4	88
74	Sequence-specific assignments of the backbone proton, carbon-13, nitrogen-15 resonances of the MutT enzyme by heteronuclear multidimensional NMR. Biochemistry, 1993, 32, 13071-13080.	2.5	30