Melanie J Correll

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3560174/publications.pdf

Version: 2024-02-01

516710 642732 23 971 16 23 citations g-index h-index papers 26 26 26 822 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Phytochromes A and B Mediate Red-Light-Induced Positive Phototropism in Roots. Plant Physiology, 2003, 131, 1411-1417.	4.8	143
2	The Roles of Phytochromes in Elongation and Gravitropism of Roots. Plant and Cell Physiology, 2005, 46, 317-323.	3.1	131
3	Interactions Between Gravitropism and Phototropism in Plants. Journal of Plant Growth Regulation, 2002, 21, 89-101.	5.1	104
4	Transcriptome analyses of Arabidopsis thaliana seedlings grown in space: implications for gravity-responsive genes. Planta, 2013, 238, 519-533.	3.2	100
5	A novel phototropic response to red light is revealed in microgravity. New Phytologist, 2010, 186, 648-656.	7.3	69
6	Comparative transcriptomics indicate changes in cell wall organization and stress response in seedlings during spaceflight. American Journal of Botany, 2017, 104, 1219-1231.	1.7	64
7	Gene profiling of the red light signalling pathways in roots. Journal of Experimental Botany, 2006, 57, 3217-3229.	4.8	48
8	Simplified acoustic window mist bioreactor. Biotechnology Letters, 1997, 11, 155-158.	0.5	44
9	Phytochromes play a role in phototropism and gravitropism in Arabidopsis roots. Advances in Space Research, 2003, 31, 2203-2210.	2.6	39
10	Operations of a spaceflight experiment to investigate plant tropisms. Advances in Space Research, 2009, 44, 879-886.	2.6	36
11	A Predictive Model for Time-to-Flowering in the Common Bean Based on QTL and Environmental Variables. G3: Genes, Genomes, Genetics, 2017, 7, 3901-3912.	1.8	25
12	Next generation crop models: A modular approach to model early vegetative and reproductive development of the common bean (Phaseolus vulgaris L). Agricultural Systems, 2017, 155, 225-239.	6.1	24
13	A dynamic model with QTL covariables for predicting flowering time of common bean (Phaseolus) Tj ETQq1 1 0.7	784314 rg 4.1	BT /Overlock
14	Glycerol-Based Dendrimer Nanocomposite Film as a Tunable pH-Sensor for Food Packaging. ACS Applied Materials & Samp; Interfaces, 2021, 13, 23268-23281.	8.0	23
15	Ground-based studies of tropisms in hardware developed for the European Modular Cultivation System (EMCS). Advances in Space Research, 2005, 36, 1203-1210.	2.6	22
16	Biocompatibility studies in preparation for a spaceflight experiment on plant tropisms (TROPI). Advances in Space Research, 2007, 39, 1154-1160.	2.6	20
17	Improvements in the re-flight of spaceflight experiments on plant tropisms. Advances in Space Research, 2011, 47, 545-552.	2.6	12
18	Reliability of Genotype-Specific Parameter Estimation for Crop Models: Insights from a Markov Chain Monte-Carlo Estimation Approach. Transactions of the ASABE, 2017, 60, 1699-1712.	1.1	10

#	Article	IF	CITATION
19	Nanocomposite of Graphene Oxide Encapsulated in Polymethylmethacrylate (PMMA): Pre-Modification, Synthesis, and Latex Stability. Journal of Composites Science, 2020, 4, 118.	3.0	8
20	Incorporating a dynamic gene-based process module into a crop simulation model. In Silico Plants, $2021, 3, .$	1.9	8
21	Development of a QTL-environment-based predictive model for node addition rate in common bean. Theoretical and Applied Genetics, 2017, 130, 1065-1079.	3.6	7
22	Extraction and labeling methods for microarrays using small amounts of plant tissue. Physiologia Plantarum, 2009, 135, 229-236.	5.2	6
23	Real-Time and Rapid Food Quality Monitoring Using Smart Sensory Films with Image Analysis and Machine Learning. ACS Food Science & Technology, 2022, 2, 1123-1134.	2.7	4