
Masato Nikaido

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3559247/publications.pdf Version: 2024-02-01

ΜΑSATO ΝΙΚΑΙDO

#	Article	IF	CITATIONS
1	The genomic substrate for adaptive radiation in African cichlid fish. Nature, 2014, 513, 375-381.	27.8	874
2	Phylogenetic relationships among cetartiodactyls based on insertions of short and long interpersed elements: Hippopotamuses are the closest extant relatives of whales. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 10261-10266.	7.1	402
3	Retroposon analysis of major cetacean lineages: The monophyly of toothed whales and the paraphyly of river dolphins. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 7384-7389.	7.1	239
4	Mitochondrial Phylogenetics and Evolution of Mysticete Whales. Systematic Biology, 2005, 54, 77-90.	5.6	143
5	Maximum Likelihood Analysis of the Complete Mitochondrial Genomes of Eutherians and a Reevaluation of the Phylogeny of Bats and Insectivores. Journal of Molecular Evolution, 2001, 53, 508-516.	1.8	128
6	Coelacanth genomes reveal signatures for evolutionary transition from water to land. Genome Research, 2013, 23, 1740-1748.	5.5	108
7	Interordinal relationships and timescale of eutherian evolution as inferred from mitochondrial genome data. Gene, 2000, 259, 149-158.	2.2	107
8	Extensive mitochondrial gene arrangements in coleoid Cephalopoda and their phylogenetic implications. Molecular Phylogenetics and Evolution, 2006, 38, 648-658.	2.7	91
9	A Retroposon Analysis of Afrotherian Phylogeny. Molecular Biology and Evolution, 2005, 22, 1823-1833.	8.9	88
10	Genealogy of families of SINEs in cetaceans and artiodactyls: the presence of a huge superfamily of tRNA(Glu)-derived families of SINEs. Molecular Biology and Evolution, 1999, 16, 1046-1060.	8.9	85
11	Balaenoptera omurai is a newly discovered baleen whale that represents an ancient evolutionary lineage. Molecular Phylogenetics and Evolution, 2006, 41, 40-52.	2.7	84
12	Ancient SINEs from African Endemic Mammals. Molecular Biology and Evolution, 2003, 20, 522-527.	8.9	81
13	The status of the Japanese and East Asian bats of the genus Myotis (Vespertilionidae) based on mitochondrial sequences. Molecular Phylogenetics and Evolution, 2003, 28, 297-307.	2.7	74
14	Baleen Whale Phylogeny and a Past Extensive Radiation Event Revealed by SINE Insertion Analysis. Molecular Biology and Evolution, 2006, 23, 866-873.	8.9	69
15	Molecular phylogenetic study on the origin and evolution of Mustelidae. Gene, 2007, 396, 1-12.	2.2	66
16	Monophyletic Origin of the Order Chiroptera and Its Phylogenetic Position Among Mammalia, as Inferred from the Complete Sequence of the Mitochondrial DNA of a Japanese Megabat, the Ryukyu Flying Fox (Pteropus dasymallus). Journal of Molecular Evolution, 2000, 51, 318-328.	1.8	62
17	Mitochondrial phylogeny of hedgehogs and monophyly of Eulipotyphla. Molecular Phylogenetics and Evolution, 2003, 28, 276-284.	2.7	61
18	Intra- and Interfamily Relationships of Vespertilionidae Inferred by Various Molecular Markers Including SINE Insertion Data. Journal of Molecular Evolution, 2002, 55, 284-301.	1.8	60

MASATO NIKAIDO

#	Article	IF	CITATIONS
19	Afrotherian phylogeny as inferred from complete mitochondrial genomes. Molecular Phylogenetics and Evolution, 2003, 28, 253-260.	2.7	49
20	Retroposon Mapping in Molecular Systematics. , 2004, 260, 189-226.		47
21	First Application of the SINE (Short Interspersed Repetitive Element) Method to Infer Phylogenetic Relationships in Reptiles: An Example from the Turtle Superfamily Testudinoidea. Molecular Biology and Evolution, 2004, 21, 705-715.	8.9	46
22	Toothed whale monophyly reassessed by SINE insertion analysis: The absence of lineage sorting effects suggests a small population of a common ancestral species. Molecular Phylogenetics and Evolution, 2007, 43, 216-224.	2.7	43
23	The rise and fall of the CR1 subfamily in the lineage leading to penguins. Gene, 2006, 365, 57-66.	2.2	39
24	Consistency of SINE Insertion Topology and Flanking Sequence Tree: Quantifying Relationships Among Cetartiodactyls. Molecular Biology and Evolution, 2000, 17, 1417-1424.	8.9	35
25	Evolution of CHR-2 SINEs in cetartiodactyl genomes: possible evidence for the monophyletic origin of toothed whales. Mammalian Genome, 2001, 12, 909-915.	2.2	34
26	Unique Mammalian tRNA-Derived Repetitive Elements in Dermopterans: The t-SINE Family and Its Retrotransposition Through Multiple Sources. Molecular Biology and Evolution, 2003, 20, 1659-1668.	8.9	34
27	Vertebrate Rhodopsin Adaptation to Dim Light via Rapid Meta-II Intermediate Formation. Molecular Biology and Evolution, 2010, 27, 506-519.	8.9	34
28	Conserved repertoire of orthologous vomeronasal type 1 receptor genes in ruminant species. BMC Evolutionary Biology, 2009, 9, 233.	3.2	32
29	New candidate species most closely related to penguins. Gene, 2006, 378, 65-73.	2.2	29
30	The complete mitochondrial genomes of deep-sea squid (Bathyteuthis abyssicola), bob-tail squid (Semirossia patagonica) and four giant cuttlefish (Sepia apama, S. latimanus, S. lycidas and S. pharanis), and their application to the phylogenetic analysis of Decapodiformes. Molecular Phylogenetics and Evolution, 2013, 69, 980-993.	2.7	29
31	Characterization of a novel SINE superfamily from invertebrates: "Ceph-SINEs―from the genomes of squids and cuttlefish. Gene, 2010, 454, 8-19.	2.2	28
32	Lineage-Specific Expansion of Vomeronasal Type 2 Receptor-Like (OlfC) Genes in Cichlids May Contribute to Diversification of Amino Acid Detection Systems. Genome Biology and Evolution, 2013, 5, 711-722.	2.5	26
33	Phylogenetic Analysis of Diprotodontian Marsupials Based on Complete Mitochondrial Genomes. Genes and Genetic Systems, 2006, 81, 181-191.	0.7	25
34	A SINE that acquired a role in signal transduction during evolution. Molecular Biology and Evolution, 1998, 15, 923-925.	8.9	24
35	Newly discovered young CORE-SINEs in marsupial genomes. Gene, 2008, 407, 176-185.	2.2	23
36	Multiple Episodic Evolution Events in V1R Receptor Genes of East-African Cichlids. Genome Biology and Evolution, 2014, 6, 1135-1144.	2.5	22

MASATO NIKAIDO

#	Article	IF	CITATIONS
37	Evolution of vomeronasal receptor 1 (V1R) genes in the common marmoset (Callithrix jacchus). Gene, 2018, 642, 343-353.	2.2	22
38	Genetically distinct coelacanth population off the northern Tanzanian coast. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18009-18013.	7.1	20
39	A single pheromone receptor gene conserved across 400 million years of vertebrate evolution. Molecular Biology and Evolution, 2018, 35, 2928-2939.	8.9	20
40	Characterization of V1R receptor (ora) genes in Lake Victoria cichlids. Gene, 2012, 499, 273-279.	2.2	18
41	Genetic variation and demographic history of the Haplochromis laparogramma group of Lake Victoria—An analysis based on SINEs and mitochondrial DNA. Gene, 2010, 450, 39-47.	2.2	17
42	Distinct functions of two olfactory marker protein genes derived from teleost-specific whole genome duplication. BMC Evolutionary Biology, 2015, 15, 245.	3.2	16
43	The phylogenetic relationships of insectivores with special reference to the lesser hedgehog tenrec as inferred from the complete sequence of their mitochondrial genome Genes and Genetic Systems, 2003, 78, 107-112.	0.7	12
44	A microsatellite-based genetic linkage map and putative sex-determining genomic regions in Lake Victoria cichlids. Gene, 2015, 560, 156-164.	2.2	12
45	MyrSINEs: A novel SINE family in the anteater genomes. Gene, 2007, 400, 98-103.	2.2	11
46	Genomic expansion of the Bov-A2 retroposon relating to phylogeny and breed management. Mammalian Genome, 2007, 18, 187-196.	2.2	11
47	Chronology of the extant African elephant species and case study of the species identification of the small African elephant with the molecular phylogenetic method. Gene, 2009, 441, 176-186.	2.2	11
48	Evolution of <i>V1R</i> pheromone receptor genes in vertebrates: diversity and commonality. Genes and Genetic Systems, 2019, 94, 141-149.	0.7	11
49	Inactivation of ancV1R as a Predictive Signature for the Loss of Vomeronasal System in Mammals. Genome Biology and Evolution, 2020, 12, 766-778.	2.5	11
50	Comparative genomic analyses illuminate the distinct evolution of megabats within Chiroptera. DNA Research, 2020, 27, .	3.4	10
51	Extremely slow rate of evolution in the HOX cluster revealed by comparison between Tanzanian and Indonesian coelacanths. Gene, 2012, 505, 324-332.	2.2	9
52	Genomic Signatures for Species-Specific Adaptation in Lake Victoria Cichlids Derived from Large-Scale Standing Genetic Variation. Molecular Biology and Evolution, 2021, 38, 3111-3125.	8.9	9
53	CetSINEs and AREs are not SINEs but are parts of cetartiodactyl L1. Mammalian Genome, 2000, 11, 1123-1126.	2.2	7
54	Conserved keratin gene clusters in ancient fish: An evolutionary seed for terrestrial adaptation. Genomics, 2021, 113, 1120-1128.	2.9	7

MASATO NIKAIDO

#	Article	IF	CITATIONS
55	New Sex Chromosomes in Lake Victoria Cichlid Fishes (Cichlidae: Haplochromini). Genes, 2022, 13, 804.	2.4	5
56	Patterns of genomic differentiation between two Lake Victoria cichlid species, Haplochromis pyrrhocephalus and H. sp. â€~macula'. BMC Evolutionary Biology, 2019, 19, 68.	3.2	4
57	Remarkable diversity of vomeronasal type 2 receptor (OlfC) genes of basal ray-finned fish and its evolutionary trajectory in jawed vertebrates. Scientific Reports, 2022, 12, 6455.	3.3	3
58	SINEs as Credible Signs to Prove Common Ancestry in the Tree of Life: A Brief Review of Pioneering Case Studies in Retroposon Systematics. Genes, 2022, 13, 989.	2.4	3
59	A transcriptomic reevaluation of the accessory olfactory organ in Bichir (Polypterus senegalus). Zoological Letters, 2022, 8, 5.	1.3	2
60	Éléments mobiles SINE en phylogénie. Medecine/Sciences, 2002, 18, 1276-1281.	0.2	1
61	Evolution of CHR-2 SINEs in cetartiodactyl genomes: possible evidence for the monophyletic origin of toothed whales. Mammalian Genome, 2001, 012, 0909-0915.	2.2	Ο