Matthew W Glasscott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/355917/publications.pdf

Version: 2024-02-01

24 papers 858 citations

567281 15 h-index 25 g-index

26 all docs

26 docs citations

times ranked

26

828 citing authors

#	Article	IF	CITATIONS
1	Analytical Methods Incorporating Molecularly Imprinted Polymers (MIPs) for the Quantification of Microcystins: A Mini-Review. Critical Reviews in Analytical Chemistry, 2022, 52, 1244-1258.	3.5	12
2	Enhancing Scanning Electrochemical Microscopy's Potential to Probe Dynamic Co-Culture Systems via Hyperspectral Assisted-Imaging. Analyst, The, 2022, , .	3.5	3
3	ACEstat: A DIY Guide to Unlocking the Potential of Integrated Circuit Potentiostats for Open-Source Electrochemical Analysis. Analytical Chemistry, 2022, 94, 4906-4912.	6.5	8
4	Classifying and benchmarking high-entropy alloys and associated materials for electrocatalysis: A brief review of best practices. Current Opinion in Electrochemistry, 2022, 34, 100976.	4.8	17
5	Electrodeposition in aqueous nanoreactors. Current Opinion in Electrochemistry, 2021, 25, 100637.	4.8	10
6	Mapping Solvent Entrapment in Multiphase Systems by Electrogenerated Chemiluminescence. Langmuir, 2021, 37, 2907-2912.	3.5	18
7	In Situ Preconcentration and Quantification of Cu ²⁺ via Chelating Polymer-Wrapped Multiwalled Carbon Nanotubes. ACS Omega, 2021, 6, 5158-5165.	3.5	9
8	A Generalized Potentiostat Adaptor for Multiplexed Electroanalysis. Analytical Chemistry, 2021, 93, 7381-7387.	6.5	13
9	Toward Rational Design of Electrogenerated Molecularly Imprinted Polymers (eMIPs): Maximizing Monomer/Template Affinity. ACS Applied Polymer Materials, 2021, 3, 4523-4533.	4.4	11
10	The Role of Oxygen in the Voltaic Pile. Journal of Chemical Education, 2021, 98, 2927-2936.	2.3	7
11	The oxidation of ferrocene in sessile toluene macro- and microdroplets: An opto-electrochemical study. Journal of Electroanalytical Chemistry, 2021, , 115922.	3.8	3
12	Enzyme Kinetics via Open Circuit Potentiometry. Analytical Chemistry, 2020, 92, 2266-2273.	6.5	31
13	SweepStat: A Build-It-Yourself, Two-Electrode Potentiostat for Macroelectrode and Ultramicroelectrode Studies. Journal of Chemical Education, 2020, 97, 265-270.	2.3	51
14	Electrochemical sensors for the detection of fentanyl and its analogs: Foundations and recent advances. TrAC - Trends in Analytical Chemistry, 2020, 132, 116037.	11.4	36
15	μ-MIP: Molecularly Imprinted Polymer-Modified Microelectrodes for the Ultrasensitive Quantification of GenX (HFPO-DA) in River Water. Environmental Science and Technology Letters, 2020, 7, 489-495.	8.7	45
16	Quantifying Growth Kinetics of Single Nanoparticles in Sub-Femtoliter Reactors. Journal of Physical Chemistry C, 2020, 124, 14380-14389.	3.1	21
17	Voltammetric Analysis of Redox Reactions and Ion Transfer in Water Microdroplets. Langmuir, 2020, 36, 8231-8239.	3.5	26
18	Visualizing Phase Boundaries with Electrogenerated Chemiluminescence. Journal of Physical Chemistry Letters, 2020, 11, 4803-4808.	4.6	45

#	Article	IF	CITATIONS
19	Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis. Nature Communications, 2019, 10, 2650.	12.8	286
20	Fine-Tuning Porosity and Time-Resolved Observation of the Nucleation and Growth of Single Platinum Nanoparticles. ACS Nano, 2019, 13, 4572-4581.	14.6	38
21	Advanced Characterization Techniques for Evaluating Porosity, Nanopore Tortuosity, and Electrical Connectivity at the Single-Nanoparticle Level. ACS Applied Nano Materials, 2019, 2, 819-830.	5.0	25
22	One-step electrodeposition of ligand-free PdPt alloy nanoparticles from water droplets: Controlling size, coverage, and elemental stoichiometry. Electrochemistry Communications, 2019, 98, 1-5.	4.7	27
23	A Universal Platform for the Electrodeposition of Ligand-Free Metal Nanoparticles from a Water-in-Oil Emulsion System. ACS Applied Nano Materials, 2018, 1, 5702-5711.	5.0	52
24	Direct Electrochemical Observation of Single Platinum Cluster Electrocatalysis on Ultramicroelectrodes. Analytical Chemistry, 2018, 90, 7804-7808.	6.5	50