Peter Goettig

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3559006/publications.pdf

Version: 2024-02-01

304743 289244 1,677 43 22 40 citations h-index g-index papers 43 43 43 2352 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Mechanisms of Proteolytic Enzymes and Their Inhibition in QM/MM Studies. International Journal of Molecular Sciences, 2021, 22, 3232.	4.1	22
2	Reversed Proteolysis—Proteases as Peptide Ligases. Catalysts, 2021, 11, 33.	3.5	8
3	Engineering Pyrrolysyl-tRNA Synthetase for the Incorporation of Non-Canonical Amino Acids with Smaller Side Chains. International Journal of Molecular Sciences, 2021, 22, 11194.	4.1	15
4	Proteolytic chemokine cleavage as a regulator of lymphocytic infiltration in solid tumors. Cancer and Metastasis Reviews, 2019, 38, 417-430.	5.9	27
5	Surface loops of trypsin-like serine proteases as determinants of function. Biochimie, 2019, 166, 52-76.	2.6	46
6	Role of the Cysteine 81 Residue of Macrophage Migration Inhibitory Factor as a Molecular Redox Switch. Biochemistry, 2018, 57, 1523-1532.	2.5	20
7	N-Terminomics identifies HtrA1 cleavage of thrombospondin-1 with generation of a proangiogenic fragment in the polarized retinal pigment epithelial cell model of age-related macular degeneration. Matrix Biology, 2018, 70, 84-101.	3.6	31
8	An unexpected switch in peptide binding mode: from simulation to substrate specificity. Journal of Biomolecular Structure and Dynamics, 2018, 36, 4072-4084.	3. 5	7
9	Specificity profiling of human trypsin-isoenzymes. Biological Chemistry, 2018, 399, 997-1007.	2.5	14
10	Activation and activity of glycosylated KLKs 3, 4 and 11. Biological Chemistry, 2018, 399, 1009-1022.	2.5	7
11	Structural determinants of specificity and regulation of activity in the allosteric loop network of human KLK8/neuropsin. Scientific Reports, 2018, 8, 10705.	3.3	7
12	Kallikrein-related peptidases represent attractive therapeutic targets for ovarian cancer. Expert Opinion on Therapeutic Targets, 2018, 22, 745-763.	3.4	22
13	Kallikrein-related peptidase 5 and seasonal influenza viruses, limitations of the experimental models for activating proteases. Biological Chemistry, 2018, 399, 1053-1064.	2.5	9
14	Effects of Glycosylation on the Enzymatic Activity and Mechanisms of Proteases. International Journal of Molecular Sciences, 2016, 17, 1969.	4.1	88
15	Structural basis for the Zn ²⁺ inhibition of the zymogen-like kallikrein-related peptidase 10. Biological Chemistry, 2016, 397, 1251-1264.	2.5	8
16	Clinical relevance of kallikrein-related peptidase 6 (KLK6) and 8 (KLK8) mRNA expression in advanced serous ovarian cancer. Biological Chemistry, 2016, 397, 1265-1276.	2.5	25
17	The solution structure of the kallikrein-related peptidases inhibitor SPINK6. Biochemical and Biophysical Research Communications, 2016, 471, 103-108.	2.1	7
18	A Single Glycan at the 99-Loop of Human Kallikrein-related Peptidase 2 Regulates Activation and Enzymatic Activity. Journal of Biological Chemistry, 2016, 291, 593-604.	3.4	21

#	Article	IF	Citations
19	Structure-Function Analyses of Human Kallikrein-related Peptidase 2 Establish the 99-Loop as Master Regulator of Activity. Journal of Biological Chemistry, 2014, 289, 34267-34283.	3.4	28
20	Sweetened kallikrein-related peptidases (KLKs): glycan trees as potential regulators of activation and activity. Biological Chemistry, 2014, 395, 959-976.	2.5	22
21	Function and clinical relevance of kallikrein-related peptidases and other serine proteases in gynecological cancers. Critical Reviews in Clinical Laboratory Sciences, 2014, 51, 63-84.	6.1	24
22	Do-it-yourself histidine-tagged bovine enterokinase: A handy member of the protein engineer's toolbox. Journal of Biotechnology, 2013, 168, 421-425.	3.8	30
23	Functional Mapping of Human Dynamin-1-Like GTPase Domain Based on X-ray Structure Analyses. PLoS ONE, 2013, 8, e71835.	2.5	63
24	Kallikrein-Related Peptidase 5., 2013,, 2772-2778.		1
25	4 Structural Aspects of Kallikrein-related Peptidases. , 2012, , 97-116.		1
26	A mild phenotype of dihydropyrimidine dehydrogenase deficiency and developmental retardation associated with a missense mutation affecting cofactor binding. Clinical Biochemistry, 2011, 44, 722-724.	1.9	4
27	The Dimer Interface of the Membrane Type 1 Matrix Metalloproteinase Hemopexin Domain. Journal of Biological Chemistry, $2011,286,7587-7600$.	3.4	52
28	Crystal structure of the NADP-dependent mannitol dehydrogenase from Cladosporium herbarum: Implications for oligomerisation and catalysis. Biochimie, 2010, 92, 985-993.	2.6	14
29	Natural and synthetic inhibitors of kallikrein-related peptidases (KLKs). Biochimie, 2010, 92, 1546-1567.	2.6	129
30	Polyclonal antibodies against kallikrein-related peptidase 4 (KLK4): immunohistochemical assessment of KLK4 expression in healthy tissues and prostate cancer. Biological Chemistry, 2010, 391, 391-401.	2.5	35
31	A completed KLK activome profile: investigation of activation profiles of KLK9, 10, and 15. Biological Chemistry, 2009, 390, 373-377.	2.5	45
32	Structural Determinants of the ADAM Inhibition by TIMP-3: Crystal Structure of the TACE-N-TIMP-3 Complex. Journal of Molecular Biology, 2008, 381, 1307-1319.	4.2	87
33	Structures and specificity of the human kallikrein-related peptidases KLK 4, 5, 6, and 7. Biological Chemistry, 2008, 389, 623-632.	2.5	72
34	Chymotryptic specificity determinants in the 1.0 â,,« structure of the zinc-inhibited human tissue kallikrein 7. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16086-16091.	7.1	78
35	Crystal Structures of MMP-9 Complexes with Five Inhibitors: Contribution of the Flexible Arg424 Side-chain to Selectivity. Journal of Molecular Biology, 2007, 371, 989-1006.	4.2	132
36	Structural Basis of the Zinc Inhibition of Human Tissue Kallikrein 5. Journal of Molecular Biology, 2007, 373, 1017-1031.	4.2	81

PETER GOETTIG

#	ARTICLE	IF	CITATION
37	Macrocyclic Statineâ€Based Inhibitors of BACEâ€1. ChemBioChem, 2007, 8, 2078-2091.	2.6	22
38	Crystal Structures of Human Tissue Kallikrein 4: Activity Modulation by a Specific Zinc Binding Site. Journal of Molecular Biology, 2006, 362, 1094-1107.	4.2	80
39	Specificity Profiling of Seven Human Tissue Kallikreins Reveals Individual Subsite Preferences. Journal of Biological Chemistry, 2006, 281, 25678-25688.	3.4	132
40	X-ray Snapshots of Peptide Processing in Mutants of Tricorn-interacting Factor F1 from Thermoplasma acidophilum. Journal of Biological Chemistry, 2005, 280, 33387-33396.	3.4	23
41	Crystal Structures of the Tricorn Interacting Factor F3 from Thermoplasma acidophilum, a Zinc Aminopeptidase in Three Different Conformations. Journal of Molecular Biology, 2005, 349, 787-800.	4.2	77
42	Characterization of the HslU chaperone affinity for HslV protease. Protein Science, 2005, 14, 1357-1362.	7.6	16
43	Structures of the tricorn-interacting aminopeptidase F1 with different ligands explain its catalytic mechanism. EMBO Journal, 2002, 21, 5343-5352.	7.8	45